Ebook: The art of random walks
Author: András Telcs (auth.)
- Genre: Mathematics // Mathematicsematical Statistics
- Tags: Probability Theory and Stochastic Processes, Partial Differential Equations
- Series: Lecture Notes in Mathematics 1885
- Year: 2006
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics:
- The multiplicative Einstein relation,
- Isoperimetric inequalities,
- Heat kernel estimates
- Elliptic and parabolic Harnack inequality.
Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics:
- The multiplicative Einstein relation,
- Isoperimetric inequalities,
- Heat kernel estimates
- Elliptic and parabolic Harnack inequality.