Ebook: Galois Theory, Coverings, and Riemann Surfaces
Author: Askold Khovanskii (auth.)
- Tags: Field Theory and Polynomials, Group Theory and Generalizations, Topology, Algebra, Algebraic Geometry
- Year: 2013
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.
All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.
All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.
All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.
Content:
Front Matter....Pages I-VIII
Galois Theory....Pages 1-40
Coverings....Pages 41-63
Ramified Coverings and Galois Theory....Pages 65-77
Back Matter....Pages 79-81