Ebook: Path integrals in quantum mechanics, statistics, polymer physics, and financial markets
Author: Hagen Kleinert
- Genre: Mathematics // Mathematicsematical Statistics
- Year: 2004
- Publisher: World Scientific Publishing Company
- Edition: 3
- Language: English
- djvu
In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.
The powerful Feynman–Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.
Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.
Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern–Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.
The relevance of path integrals to financial markets is discussed, and improvements of the famous Black–Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.
The author’s other book on ‘Critical Properties of f4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.