Ebook: Fourier analysis in convex geometry
Author: Alexander Koldobsky
- Genre: Mathematics // Geometry and Topology
- Series: Mathematical Surveys and Monographs
- Year: 2005
- Publisher: American Mathematical Society
- City: Princeton
- Language: English
- djvu
One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the $(n-1)$-dimensional volume of hyperplane sections of the $n$-dimensional unit cube (it is $sqrt{2}$ for each $ngeq 2$). Another is the Busemann-Petty problem: if $K$ and $L$ are two convex origin-symmetric $n$-dimensional bodies and the $(n-1)$-dimensional volume of each central hyperplane section of $K$ is less than the $(n-1)$-dimensional volume of the corresponding section of $L$, is it true that the $n$-dimensional volume of $K$ is less than the volume of $L$? (The answer is positive for $nle 4$ and negative for $n>4$.)
The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.