Online Library TheLib.net » Generalized Etale Cohomology Theories
cover of the book Generalized Etale Cohomology Theories

Ebook: Generalized Etale Cohomology Theories

00
27.01.2024
0
0

A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.

This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.

------ Reviews

(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves. (…) This book provides the user with the first complete account which is sensitive enough to be compatible with the sort of closed model category necessary in K-theory applications (…). As an application of the techniques the author gives proofs of the descent theorems of R. W. Thomason and Y. A. Nisnevich. (…) The book concludes with a discussion of the Lichtenbaum-Quillen conjecture (an approximation to Thomason’s theorem without Bott periodicity). The recent proof of this conjecture, by V. Voevodsky, (…) makes this volume compulsory reading for all who want to be au fait with current trends in algebraic K-theory!

- Zentralblatt MATH

The presentation of these topics is highly original. The book will be very useful for any researcher interested in subjects related to algebraic K-theory.

- Matematica




A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.

This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.

------ Reviews

(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves. (…) This book provides the user with the first complete account which is sensitive enough to be compatible with the sort of closed model category necessary in K-theory applications (…). As an application of the techniques the author gives proofs of the descent theorems of R. W. Thomason and Y. A. Nisnevich. (…) The book concludes with a discussion of the Lichtenbaum-Quillen conjecture (an approximation to Thomason’s theorem without Bott periodicity). The recent proof of this conjecture, by V. Voevodsky, (…) makes this volume compulsory reading for all who want to be au fait with current trends in algebraic K-theory!

- Zentralblatt MATH

The presentation of these topics is highly original. The book will be very useful for any researcher interested in subjects related to algebraic K-theory.

- Matematica




A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.

This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.

------ Reviews

(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves. (…) This book provides the user with the first complete account which is sensitive enough to be compatible with the sort of closed model category necessary in K-theory applications (…). As an application of the techniques the author gives proofs of the descent theorems of R. W. Thomason and Y. A. Nisnevich. (…) The book concludes with a discussion of the Lichtenbaum-Quillen conjecture (an approximation to Thomason’s theorem without Bott periodicity). The recent proof of this conjecture, by V. Voevodsky, (…) makes this volume compulsory reading for all who want to be au fait with current trends in algebraic K-theory!

- Zentralblatt MATH

The presentation of these topics is highly original. The book will be very useful for any researcher interested in subjects related to algebraic K-theory.

- Matematica


Content:
Front Matter....Pages i-x
Smash products of spectra....Pages 1-29
Abstract homotopy theory of n-fold spectra....Pages 31-65
First applications....Pages 67-89
Auxilliary results....Pages 91-142
K-theory presheaves....Pages 143-194
Generalized etale cohomology....Pages 195-237
Bott periodic K-theory....Pages 239-311
Back Matter....Pages 313-317


A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.

This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.

------ Reviews

(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves. (…) This book provides the user with the first complete account which is sensitive enough to be compatible with the sort of closed model category necessary in K-theory applications (…). As an application of the techniques the author gives proofs of the descent theorems of R. W. Thomason and Y. A. Nisnevich. (…) The book concludes with a discussion of the Lichtenbaum-Quillen conjecture (an approximation to Thomason’s theorem without Bott periodicity). The recent proof of this conjecture, by V. Voevodsky, (…) makes this volume compulsory reading for all who want to be au fait with current trends in algebraic K-theory!

- Zentralblatt MATH

The presentation of these topics is highly original. The book will be very useful for any researcher interested in subjects related to algebraic K-theory.

- Matematica


Content:
Front Matter....Pages i-x
Smash products of spectra....Pages 1-29
Abstract homotopy theory of n-fold spectra....Pages 31-65
First applications....Pages 67-89
Auxilliary results....Pages 91-142
K-theory presheaves....Pages 143-194
Generalized etale cohomology....Pages 195-237
Bott periodic K-theory....Pages 239-311
Back Matter....Pages 313-317
....
Download the book Generalized Etale Cohomology Theories for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen