Ebook: Topics in Survey Sampling
Author: Parimal Mukhopadhyay (auth.)
- Tags: Statistical Theory and Methods
- Series: Lecture Notes in Statistics 153
- Year: 2001
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- pdf
The aim of this book is to make a comprehensive review on some of the research topics in the area of survey sampling which has not been covered in any book yet. The proposed book aims at making a comprehensive review of applications of Bayes procedures, Empirical Bayes procedures and their ramifications (like linear Bayes estimation, restricted Bayes least square prediction, constrained Bayes estimation, Bayesian robustness) in making inference from a finite population sampling. Parimal Mukhopadhyay is Professor at the Indian Statistical Institute (ISI), Calcutta. He received his Ph.D. degree in Statistics from the University of Calcutta in 1977. He also served as a faculty member in the University of Ife, Nigeria, Moi University, Kenya, University of South Pacific, Fiji Islands and held visiting positions at University of Montreal, University of Windsor, Stockholm University, University of Western Australia, etc. He has to his credit more than fifty research papers in Survey Sampling, some co-authored, three text books on Statistics and three research monographs in Survey Sampling. He is a member of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute.
The aim of this book is to make a comprehensive review on some of the research topics in the area of survey sampling which has not been covered in any book yet. The proposed book aims at making a comprehensive review of applications of Bayes procedures, Empirical Bayes procedures and their ramifications (like linear Bayes estimation, restricted Bayes least square prediction, constrained Bayes estimation, Bayesian robustness) in making inference from a finite population sampling. Parimal Mukhopadhyay is Professor at the Indian Statistical Institute (ISI), Calcutta. He received his Ph.D. degree in Statistics from the University of Calcutta in 1977. He also served as a faculty member in the University of Ife, Nigeria, Moi University, Kenya, University of South Pacific, Fiji Islands and held visiting positions at University of Montreal, University of Windsor, Stockholm University, University of Western Australia, etc. He has to his credit more than fifty research papers in Survey Sampling, some co-authored, three text books on Statistics and three research monographs in Survey Sampling. He is a member of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute.
The aim of this book is to make a comprehensive review on some of the research topics in the area of survey sampling which has not been covered in any book yet. The proposed book aims at making a comprehensive review of applications of Bayes procedures, Empirical Bayes procedures and their ramifications (like linear Bayes estimation, restricted Bayes least square prediction, constrained Bayes estimation, Bayesian robustness) in making inference from a finite population sampling. Parimal Mukhopadhyay is Professor at the Indian Statistical Institute (ISI), Calcutta. He received his Ph.D. degree in Statistics from the University of Calcutta in 1977. He also served as a faculty member in the University of Ife, Nigeria, Moi University, Kenya, University of South Pacific, Fiji Islands and held visiting positions at University of Montreal, University of Windsor, Stockholm University, University of Western Australia, etc. He has to his credit more than fifty research papers in Survey Sampling, some co-authored, three text books on Statistics and three research monographs in Survey Sampling. He is a member of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute.
Content:
Front Matter....Pages i-xi
The Basic Concepts....Pages 1-26
Inference under Frequentist Theory Approach....Pages 27-41
Bayes and Empirical Bayes Prediction of a Finite Population Total....Pages 43-92
Modifications of Bayes Procedures....Pages 93-129
Estimation of Finite Population Variance, Regression Coefficient....Pages 131-164
Estimation of a Finite Population Distribution Function....Pages 165-201
Prediction in Finite Population under Measurement Error Models....Pages 203-229
Miscellaneous Topics....Pages 231-260
Back Matter....Pages 261-294
The aim of this book is to make a comprehensive review on some of the research topics in the area of survey sampling which has not been covered in any book yet. The proposed book aims at making a comprehensive review of applications of Bayes procedures, Empirical Bayes procedures and their ramifications (like linear Bayes estimation, restricted Bayes least square prediction, constrained Bayes estimation, Bayesian robustness) in making inference from a finite population sampling. Parimal Mukhopadhyay is Professor at the Indian Statistical Institute (ISI), Calcutta. He received his Ph.D. degree in Statistics from the University of Calcutta in 1977. He also served as a faculty member in the University of Ife, Nigeria, Moi University, Kenya, University of South Pacific, Fiji Islands and held visiting positions at University of Montreal, University of Windsor, Stockholm University, University of Western Australia, etc. He has to his credit more than fifty research papers in Survey Sampling, some co-authored, three text books on Statistics and three research monographs in Survey Sampling. He is a member of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute.
Content:
Front Matter....Pages i-xi
The Basic Concepts....Pages 1-26
Inference under Frequentist Theory Approach....Pages 27-41
Bayes and Empirical Bayes Prediction of a Finite Population Total....Pages 43-92
Modifications of Bayes Procedures....Pages 93-129
Estimation of Finite Population Variance, Regression Coefficient....Pages 131-164
Estimation of a Finite Population Distribution Function....Pages 165-201
Prediction in Finite Population under Measurement Error Models....Pages 203-229
Miscellaneous Topics....Pages 231-260
Back Matter....Pages 261-294
....