Ebook: An Introduction to Actuarial Mathematics
Author: A. K. Gupta T. Varga (auth.)
- Tags: Business/Management Science general, Economic Theory, Statistics for Business/Economics/Mathematical Finance/Insurance, Operation Research/Decision Theory
- Series: Mathematical Modelling: Theory and Applications 14
- Year: 2002
- Publisher: Springer Netherlands
- Edition: 1
- Language: English
- pdf
to Actuarial Mathematics by A. K. Gupta Bowling Green State University, Bowling Green, Ohio, U. S. A. and T. Varga National Pension Insurance Fund. Budapest, Hungary SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. A C. I. P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5949-9 ISBN 978-94-017-0711-4 (eBook) DOI 10. 1007/978-94-017-0711-4 Printed on acid-free paper All Rights Reserved © 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To Alka, Mita, and Nisha AKG To Terezia and Julianna TV TABLE OF CONTENTS PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. FINANCIAL MATHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1. Compound Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2. Present Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1. 3. Annuities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 CHAPTER 2. MORTALITy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 1 Survival Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 2. Actuarial Functions of Mortality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2. 3. Mortality Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 CHAPTER 3. LIFE INSURANCES AND ANNUITIES . . . . . . . . . . . . . . . . . . . . . 112 3. 1. Stochastic Cash Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3. 2. Pure Endowments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3. 3. Life Insurances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3. 4. Endowments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3. 5. Life Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 CHAPTER 4. PREMIUMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4. 1. Net Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4. 2. Gross Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Vll CHAPTER 5. RESERVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5. 1. Net Premium Reserves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5. 2. Mortality Profit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 5. 3. Modified Reserves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 ANSWERS TO ODD-NuMBERED PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This text has been written by a renowned statistician and a practising actuary, primarily as an introduction to the basics of the actuarial mathematics of life insurance. Since it attempts to derive the results in a mathematically rigorous way, the concepts and techniques of one-variable calculus and probability theory have been used throughout.
Topics dealt with include important concepts of financial mathematics; the concept of interests; annuities-certain; mortality theory; different types of life insurances; stochastic cash flows in general and pure endowments, whole life and term insurances, endowments, and life annuities in particular; premium calculations; reserves; mortality profit; and negative reserves.
The book contains many systematically solved examples showing the practical applications of the theory presented. Solving the problems at the end of each section is essential for understanding the material. Answers to odd-numbered problems are given at the end of the volume.
This text has been written by a renowned statistician and a practising actuary, primarily as an introduction to the basics of the actuarial mathematics of life insurance. Since it attempts to derive the results in a mathematically rigorous way, the concepts and techniques of one-variable calculus and probability theory have been used throughout.
Topics dealt with include important concepts of financial mathematics; the concept of interests; annuities-certain; mortality theory; different types of life insurances; stochastic cash flows in general and pure endowments, whole life and term insurances, endowments, and life annuities in particular; premium calculations; reserves; mortality profit; and negative reserves.
The book contains many systematically solved examples showing the practical applications of the theory presented. Solving the problems at the end of each section is essential for understanding the material. Answers to odd-numbered problems are given at the end of the volume.
Content:
Front Matter....Pages i-ix
Financial Mathematics....Pages 1-79
Mortality....Pages 80-111
Life Insurances and Annuities....Pages 112-193
Premiums....Pages 194-222
Reserves....Pages 223-302
Back Matter....Pages 303-350
This text has been written by a renowned statistician and a practising actuary, primarily as an introduction to the basics of the actuarial mathematics of life insurance. Since it attempts to derive the results in a mathematically rigorous way, the concepts and techniques of one-variable calculus and probability theory have been used throughout.
Topics dealt with include important concepts of financial mathematics; the concept of interests; annuities-certain; mortality theory; different types of life insurances; stochastic cash flows in general and pure endowments, whole life and term insurances, endowments, and life annuities in particular; premium calculations; reserves; mortality profit; and negative reserves.
The book contains many systematically solved examples showing the practical applications of the theory presented. Solving the problems at the end of each section is essential for understanding the material. Answers to odd-numbered problems are given at the end of the volume.
Content:
Front Matter....Pages i-ix
Financial Mathematics....Pages 1-79
Mortality....Pages 80-111
Life Insurances and Annuities....Pages 112-193
Premiums....Pages 194-222
Reserves....Pages 223-302
Back Matter....Pages 303-350
....