Ebook: An Introduction to Quasisymmetric Schur Functions: Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux
- Tags: Algorithms, Topological Groups Lie Groups, Applications of Mathematics, Combinatorics
- Series: SpringerBriefs in Mathematics
- Year: 2013
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- pdf
An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.
An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.
An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.
Content:
Front Matter....Pages i-xiv
Introduction....Pages 1-3
Classical combinatorial concepts....Pages 5-17
Hopf algebras....Pages 19-50
Composition tableaux and further combinatorial concepts....Pages 51-62
Quasisymmetric Schur functions....Pages 63-81
Back Matter....Pages 83-89
An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.
Content:
Front Matter....Pages i-xiv
Introduction....Pages 1-3
Classical combinatorial concepts....Pages 5-17
Hopf algebras....Pages 19-50
Composition tableaux and further combinatorial concepts....Pages 51-62
Quasisymmetric Schur functions....Pages 63-81
Back Matter....Pages 83-89
....