Ebook: Geometric Measure Theory and Minimal Surfaces
- Tags: Measure and Integration
- Series: C.I.M.E. Summer Schools 61
- Year: 2011
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.
Content:
Front Matter....Pages i-iii
On the First Variation of Area and Generalized Mean Curvature....Pages 1-30
Geometric Measure Theory and Elliptic Variational Problems....Pages 31-117
Minimal Surfaces with Obstacles....Pages 119-153
Singularities in Soap-Bubble-Like and Soap-Film-Like Surfaces....Pages 155-171
The Analyticity of the Coincidence Set in Variational Inequalities....Pages 173-187
Boundaries of Caccioppoli Sets in the Calculus of Variations....Pages 189-220
De Giorgi'S Measure and Thin Obstacles....Pages 221-230
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.
Content:
Front Matter....Pages i-iii
On the First Variation of Area and Generalized Mean Curvature....Pages 1-30
Geometric Measure Theory and Elliptic Variational Problems....Pages 31-117
Minimal Surfaces with Obstacles....Pages 119-153
Singularities in Soap-Bubble-Like and Soap-Film-Like Surfaces....Pages 155-171
The Analyticity of the Coincidence Set in Variational Inequalities....Pages 173-187
Boundaries of Caccioppoli Sets in the Calculus of Variations....Pages 189-220
De Giorgi'S Measure and Thin Obstacles....Pages 221-230
....
Download the book Geometric Measure Theory and Minimal Surfaces for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)