Ebook: Vector-valued Laplace Transforms and Cauchy Problems: Second Edition
- Tags: Partial Differential Equations
- Series: Monographs in Mathematics 96
- Year: 2011
- Publisher: Birkhäuser Basel
- Edition: 2
- Language: English
- pdf
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis.
The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. …
The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended!
Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis.
The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. …
The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended!
Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis.
The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. …
The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended!
Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
Content:
Front Matter....Pages i-xii
Front Matter....Pages 1-4
The Laplace Integral....Pages 5-62
The Laplace Transform....Pages 63-106
Cauchy Problems....Pages 107-238
Front Matter....Pages 239-242
Asymptotics of Laplace Transforms....Pages 243-335
Asymptotics of Solutions of Cauchy Problems....Pages 337-395
Front Matter....Pages 397-399
The Heat Equation....Pages 401-416
The Wave Equation....Pages 417-428
Translation Invariant Operators on L p (? n )....Pages 429-459
Back Matter....Pages 461-539
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis.
The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. …
The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended!
Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
Content:
Front Matter....Pages i-xii
Front Matter....Pages 1-4
The Laplace Integral....Pages 5-62
The Laplace Transform....Pages 63-106
Cauchy Problems....Pages 107-238
Front Matter....Pages 239-242
Asymptotics of Laplace Transforms....Pages 243-335
Asymptotics of Solutions of Cauchy Problems....Pages 337-395
Front Matter....Pages 397-399
The Heat Equation....Pages 401-416
The Wave Equation....Pages 417-428
Translation Invariant Operators on L p (? n )....Pages 429-459
Back Matter....Pages 461-539
....