Online Library TheLib.net » Optimization with PDE Constraints

This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically relevant applications are presented. The main focus is on the algorithmical and numerical treatment of pde constrained optimization problems on the infinite dimensional level. A particular emphasis is on simple constraints, such as pointwise bounds on controls and states. For these practically important situations, tailored Newton- and SQP-type solution algorithms are proposed and a general convergence framework is developed. This is complemented with the numerical analysis of structure-preserving Galerkin schemes for optimization problems with elliptic and parabolic equations. Finally, along with the optimization of semiconductor devices and the optimization of glass cooling processes, two challenging applications of pde constrained optimization are presented. They demonstrate the scope of this emerging research field for future engineering applications.




This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically relevant applications are presented. The main focus is on the algorithmical and numerical treatment of pde constrained optimization problems on the infinite dimensional level. A particular emphasis is on simple constraints, such as pointwise bounds on controls and states. For these practically important situations, tailored Newton- and SQP-type solution algorithms are proposed and a general convergence framework is developed. This is complemented with the numerical analysis of structure-preserving Galerkin schemes for optimization problems with elliptic and parabolic equations. Finally, along with the optimization of semiconductor devices and the optimization of glass cooling processes, two challenging applications of pde constrained optimization are presented. They demonstrate the scope of this emerging research field for future engineering applications.




This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically relevant applications are presented. The main focus is on the algorithmical and numerical treatment of pde constrained optimization problems on the infinite dimensional level. A particular emphasis is on simple constraints, such as pointwise bounds on controls and states. For these practically important situations, tailored Newton- and SQP-type solution algorithms are proposed and a general convergence framework is developed. This is complemented with the numerical analysis of structure-preserving Galerkin schemes for optimization problems with elliptic and parabolic equations. Finally, along with the optimization of semiconductor devices and the optimization of glass cooling processes, two challenging applications of pde constrained optimization are presented. They demonstrate the scope of this emerging research field for future engineering applications.


Content:
Front Matter....Pages i-xi
Analytical Background and Optimality Theory....Pages 1-95
Optimization Methods in Banach Spaces....Pages 97-156
Discrete Concepts in PDE Constrained Optimization....Pages 157-232
Applications....Pages 233-263
Back Matter....Pages 265-270


This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically relevant applications are presented. The main focus is on the algorithmical and numerical treatment of pde constrained optimization problems on the infinite dimensional level. A particular emphasis is on simple constraints, such as pointwise bounds on controls and states. For these practically important situations, tailored Newton- and SQP-type solution algorithms are proposed and a general convergence framework is developed. This is complemented with the numerical analysis of structure-preserving Galerkin schemes for optimization problems with elliptic and parabolic equations. Finally, along with the optimization of semiconductor devices and the optimization of glass cooling processes, two challenging applications of pde constrained optimization are presented. They demonstrate the scope of this emerging research field for future engineering applications.


Content:
Front Matter....Pages i-xi
Analytical Background and Optimality Theory....Pages 1-95
Optimization Methods in Banach Spaces....Pages 97-156
Discrete Concepts in PDE Constrained Optimization....Pages 157-232
Applications....Pages 233-263
Back Matter....Pages 265-270
....
Download the book Optimization with PDE Constraints for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen