Online Library TheLib.net » Local Analytic Geometry: Basic Theory and Applications
cover of the book Local Analytic Geometry: Basic Theory and Applications

Ebook: Local Analytic Geometry: Basic Theory and Applications

00
27.01.2024
0
0

Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the "commutative algebra" one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called the Weierstraft Division Theorem. The above remarks motivated us to organize the first four chapters of this book as follows. In Chapter 1 we discuss the algebra we need. Here, we assume the reader attended courses on linear algebra and abstract algebra, including some Galois theory.




Buchhandelstext
Auf der Grundlage einer Einf?hrung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zun?chst Kurvensingularit?ten untersucht. Daran schlie?en Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen f?r konvergente Potenzreihenringe, Approximationss?tze, Grauerts Satz ?ber die Existenz der versellen Deformation.

Inhalt
Algebra - Affine Algebraic Geometry - Basics of Analytic Geometry - Further Development of Analytic Geometry - Plane Curve Singularities - The Principle of Conservation of Number - Standard Bases - Approximation Theorems - Classification of Simple Hypersurface Singularities - Deformations of Singularities

Zielgruppe
Mathematikstudenten ab dem 5. Semester und Mathematiker an Universit?ten.

?ber den Autor/Hrsg
Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universit?ten Saarbr?cken bzw. Kaiserslautern im Fachgebiet Mathematik.


Buchhandelstext
Auf der Grundlage einer Einf?hrung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zun?chst Kurvensingularit?ten untersucht. Daran schlie?en Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen f?r konvergente Potenzreihenringe, Approximationss?tze, Grauerts Satz ?ber die Existenz der versellen Deformation.

Inhalt
Algebra - Affine Algebraic Geometry - Basics of Analytic Geometry - Further Development of Analytic Geometry - Plane Curve Singularities - The Principle of Conservation of Number - Standard Bases - Approximation Theorems - Classification of Simple Hypersurface Singularities - Deformations of Singularities

Zielgruppe
Mathematikstudenten ab dem 5. Semester und Mathematiker an Universit?ten.

?ber den Autor/Hrsg
Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universit?ten Saarbr?cken bzw. Kaiserslautern im Fachgebiet Mathematik.
Content:
Front Matter....Pages i-xi
Algebra....Pages 1-46
Affine Algebraic Geometry....Pages 47-73
Basics of Analytic Geometry....Pages 74-125
Further Development of Analytic Geometry....Pages 126-170
Plane Curve Singularities....Pages 171-224
The Principle of Conservation of Number....Pages 225-274
Standard Bases....Pages 275-294
Approximation Theorems....Pages 295-310
Classification of Simple Hypersurface Singularities....Pages 311-338
Deformations of Singularities....Pages 339-373
Back Matter....Pages 374-384


Buchhandelstext
Auf der Grundlage einer Einf?hrung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zun?chst Kurvensingularit?ten untersucht. Daran schlie?en Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen f?r konvergente Potenzreihenringe, Approximationss?tze, Grauerts Satz ?ber die Existenz der versellen Deformation.

Inhalt
Algebra - Affine Algebraic Geometry - Basics of Analytic Geometry - Further Development of Analytic Geometry - Plane Curve Singularities - The Principle of Conservation of Number - Standard Bases - Approximation Theorems - Classification of Simple Hypersurface Singularities - Deformations of Singularities

Zielgruppe
Mathematikstudenten ab dem 5. Semester und Mathematiker an Universit?ten.

?ber den Autor/Hrsg
Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universit?ten Saarbr?cken bzw. Kaiserslautern im Fachgebiet Mathematik.
Content:
Front Matter....Pages i-xi
Algebra....Pages 1-46
Affine Algebraic Geometry....Pages 47-73
Basics of Analytic Geometry....Pages 74-125
Further Development of Analytic Geometry....Pages 126-170
Plane Curve Singularities....Pages 171-224
The Principle of Conservation of Number....Pages 225-274
Standard Bases....Pages 275-294
Approximation Theorems....Pages 295-310
Classification of Simple Hypersurface Singularities....Pages 311-338
Deformations of Singularities....Pages 339-373
Back Matter....Pages 374-384
....
Download the book Local Analytic Geometry: Basic Theory and Applications for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen