Online Library TheLib.net » Modelling Potential Crop Growth Processes: Textbook with Exercises
cover of the book Modelling Potential Crop Growth Processes: Textbook with Exercises

Ebook: Modelling Potential Crop Growth Processes: Textbook with Exercises

00
27.01.2024
0
0

We dedicate this book to professor C. T. de Wit (1924 - 1993) who initiated Production Ecology as a school of thought at the Wageningen Agricultural Univer­ sity (see Rabbinge et at. , 1990). To acknowledge the leading role of C. T. de Wit, a recently formed graduate school at this university in Production Ecology was named after him. Production Ecology is the study of ecological processes, with special attention to flows of energy and matter as factors that determine the productivity of ecological systems. Agro-ecosystems are a special case of ecosystems which are much better suited for the productivity approach than natural ecosystems are. This is the reason for the strong role of agricultural research in production ecology. On the other hand, it must be recognized that the spatial heterogeneity of natural ecosys­ tems and their species richness may alter some ecophysiological relationships. However, the basic physical, chemical and physiological processes will be the same. De Wit introduced the state variable approach as the basis for simulation mod­ elling. In this approach the floating character of nature is schematized into a series of snapshots over time in which the states are frozen at each separate moment. The current state determines how the rates of change will lead to the next snapshot. This way of thinking enables a clear and workable representation of interacting simul­ taneous processes, without compromising on the mathematics.




This textbook contains the material for a course in the major principles of modelling crop growth processes. There is much more to crop growth than what is discussed in this textbook, but it provides a sound basis for further work and study in this field. Chapter by chapter the book leads the reader to different modelled aspects of crop growth, and at the end, the reader will have a good understanding of the Wageningen simulation model SUCROS for the potential production situation. By then, it will be much easier to find one's way through descriptions and listings of other models. Throughout the text, the study of the different topics is facilitated by exercises that support the course in a hands-on computer practical exercise.
A very simple crop growth model, almost entirely based on radiation interception, is given first. This skeleton model is then expanded by submodels for respiration, carbon assimilation, plant development, and a more detailed model for radiation interception and reflection. Modelling of transpiration and the leaf energy balance is given by way of introduction.
There are many listings of the submodels, written in the simulation language FST (FORTRAN Simulation Translator), as well as of SUCROS itself, together with plentiful comments. Some supporting theory is provided in the form of Appendices.
The book is meant for students and scientists who would like to acquire a working knowledge of the technique of crop growth modelling.



This textbook contains the material for a course in the major principles of modelling crop growth processes. There is much more to crop growth than what is discussed in this textbook, but it provides a sound basis for further work and study in this field. Chapter by chapter the book leads the reader to different modelled aspects of crop growth, and at the end, the reader will have a good understanding of the Wageningen simulation model SUCROS for the potential production situation. By then, it will be much easier to find one's way through descriptions and listings of other models. Throughout the text, the study of the different topics is facilitated by exercises that support the course in a hands-on computer practical exercise.
A very simple crop growth model, almost entirely based on radiation interception, is given first. This skeleton model is then expanded by submodels for respiration, carbon assimilation, plant development, and a more detailed model for radiation interception and reflection. Modelling of transpiration and the leaf energy balance is given by way of introduction.
There are many listings of the submodels, written in the simulation language FST (FORTRAN Simulation Translator), as well as of SUCROS itself, together with plentiful comments. Some supporting theory is provided in the form of Appendices.
The book is meant for students and scientists who would like to acquire a working knowledge of the technique of crop growth modelling.

Content:
Front Matter....Pages i-xii
Introduction....Pages 1-6
The main seasonal growth pattern....Pages 7-28
Climatic factors....Pages 29-49
Assimilate flow and respiration....Pages 51-68
Development and growth....Pages 69-94
Radiation in crops....Pages 95-119
Leaf energy balance and transpiration....Pages 121-148
Analysis of leaf CO2 assimilation....Pages 149-168
Back Matter....Pages 169-239


This textbook contains the material for a course in the major principles of modelling crop growth processes. There is much more to crop growth than what is discussed in this textbook, but it provides a sound basis for further work and study in this field. Chapter by chapter the book leads the reader to different modelled aspects of crop growth, and at the end, the reader will have a good understanding of the Wageningen simulation model SUCROS for the potential production situation. By then, it will be much easier to find one's way through descriptions and listings of other models. Throughout the text, the study of the different topics is facilitated by exercises that support the course in a hands-on computer practical exercise.
A very simple crop growth model, almost entirely based on radiation interception, is given first. This skeleton model is then expanded by submodels for respiration, carbon assimilation, plant development, and a more detailed model for radiation interception and reflection. Modelling of transpiration and the leaf energy balance is given by way of introduction.
There are many listings of the submodels, written in the simulation language FST (FORTRAN Simulation Translator), as well as of SUCROS itself, together with plentiful comments. Some supporting theory is provided in the form of Appendices.
The book is meant for students and scientists who would like to acquire a working knowledge of the technique of crop growth modelling.

Content:
Front Matter....Pages i-xii
Introduction....Pages 1-6
The main seasonal growth pattern....Pages 7-28
Climatic factors....Pages 29-49
Assimilate flow and respiration....Pages 51-68
Development and growth....Pages 69-94
Radiation in crops....Pages 95-119
Leaf energy balance and transpiration....Pages 121-148
Analysis of leaf CO2 assimilation....Pages 149-168
Back Matter....Pages 169-239
....
Download the book Modelling Potential Crop Growth Processes: Textbook with Exercises for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen