Ebook: Geometric Algorithms and Combinatorial Optimization
- Tags: Combinatorics, Systems Theory Control, Calculus of Variations and Optimal Control, Optimization, Economic Theory
- Series: Algorithms and Combinatorics 2
- Year: 1993
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 2
- Language: English
- pdf
Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1
Content:
Front Matter....Pages I-XII
Mathematical Preliminaries....Pages 1-20
Complexity, Oracles, and Numerical Computation....Pages 21-45
Algorithmic Aspects of Convex Sets: Formulation of the Problems....Pages 46-63
The Ellipsoid Method....Pages 64-101
Algorithms for Convex Bodies....Pages 102-132
Diophantine Approximation and Basis Reduction....Pages 133-156
Rational Polyhedra....Pages 157-196
Combinatorial Optimization: Some Basic Examples....Pages 197-224
Combinatorial Optimization: A Tour d’Horizon....Pages 225-271
Stable Sets in Graphs....Pages 272-303
Submodular Functions....Pages 304-329
Back Matter....Pages 331-363
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1
Content:
Front Matter....Pages I-XII
Mathematical Preliminaries....Pages 1-20
Complexity, Oracles, and Numerical Computation....Pages 21-45
Algorithmic Aspects of Convex Sets: Formulation of the Problems....Pages 46-63
The Ellipsoid Method....Pages 64-101
Algorithms for Convex Bodies....Pages 102-132
Diophantine Approximation and Basis Reduction....Pages 133-156
Rational Polyhedra....Pages 157-196
Combinatorial Optimization: Some Basic Examples....Pages 197-224
Combinatorial Optimization: A Tour d’Horizon....Pages 225-271
Stable Sets in Graphs....Pages 272-303
Submodular Functions....Pages 304-329
Back Matter....Pages 331-363
....