Ebook: Bundles of Topological Vector Spaces and Their Duality
Author: Gerhard Gierz (auth.)
- Tags: Analysis
- Series: Lecture Notes in Mathematics 955
- Year: 1982
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
Content:
Front Matter....Pages -
Introduction....Pages 1-6
Notational remarks....Pages 7-7
Basic definitions....Pages 8-21
Full bundles and bundles with completely regular base space....Pages 22-27
Bundles with locally paracompact base spaces....Pages 28-38
Stone — Weierstra? theorems for bundles....Pages 39-43
An alternative description of spaces of sections: Function modules....Pages 44-59
Some algebraic aspects of ?-spaces....Pages 60-61
A third description of spaces of sections: C(X)-convex modules....Pages 62-79
C(X)-submodules of ?(p)....Pages 80-85
Quotients of bundles and C(X)-modules....Pages 86-94
Morphisms between bundles....Pages 95-111
Bundles of operators....Pages 112-135
Excursion: Continuous lattices and bundles....Pages 136-143
M-structure and bundles....Pages 144-153
An adequate M-theory for ?-spaces....Pages 154-158
Duality....Pages 159-182
The closure of the "unit ball" of a bundle and separation axioms....Pages 183-199
Locally trivial bundles: A definition....Pages 200-201
Local linear independence....Pages 202-208
The space Mod(?(p),C(X))....Pages 209-231
Internal duality of C(X)-modules....Pages 232-251
The dual space ?(p)' of a space of sections....Pages 252-260
Back Matter....Pages -
Content:
Front Matter....Pages -
Introduction....Pages 1-6
Notational remarks....Pages 7-7
Basic definitions....Pages 8-21
Full bundles and bundles with completely regular base space....Pages 22-27
Bundles with locally paracompact base spaces....Pages 28-38
Stone — Weierstra? theorems for bundles....Pages 39-43
An alternative description of spaces of sections: Function modules....Pages 44-59
Some algebraic aspects of ?-spaces....Pages 60-61
A third description of spaces of sections: C(X)-convex modules....Pages 62-79
C(X)-submodules of ?(p)....Pages 80-85
Quotients of bundles and C(X)-modules....Pages 86-94
Morphisms between bundles....Pages 95-111
Bundles of operators....Pages 112-135
Excursion: Continuous lattices and bundles....Pages 136-143
M-structure and bundles....Pages 144-153
An adequate M-theory for ?-spaces....Pages 154-158
Duality....Pages 159-182
The closure of the "unit ball" of a bundle and separation axioms....Pages 183-199
Locally trivial bundles: A definition....Pages 200-201
Local linear independence....Pages 202-208
The space Mod(?(p),C(X))....Pages 209-231
Internal duality of C(X)-modules....Pages 232-251
The dual space ?(p)' of a space of sections....Pages 252-260
Back Matter....Pages -
....
Download the book Bundles of Topological Vector Spaces and Their Duality for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)