Ebook: Bounded Integral Operators on L 2 Spaces
- Tags: Integral Equations
- Series: Ergebnisse der Mathematik und ihrer Grenzgebiete 96
- Year: 1978
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
The subject. The phrase "integral operator" (like some other mathematically informal phrases, such as "effective procedure" and "geometric construction") is sometimes defined and sometimes not. When it is defined, the definition is likely to vary from author to author. While the definition almost always involves an integral, most of its other features can vary quite considerably. Superimposed limiting operations may enter (such as L2 limits in the theory of Fourier transforms and principal values in the theory of singular integrals), IJ' spaces and abstract Banach spaces may intervene, a scalar may be added (as in the theory of the so-called integral operators of the second kind), or, more generally, a multiplication operator may be added (as in the theory of the so-called integral operators of the third kind). The definition used in this book is the most special of all. According to it an integral operator is the natural "continuous" generali zation of the operators induced by matrices, and the only integrals that appear are the familiar Lebesgue-Stieltjes integrals on classical non-pathological mea sure spaces. The category. Some of the flavor of the theory can be perceived in finite dimensional linear algebra. Matrices are sometimes considered to be an un natural and notationally inelegant way of looking at linear transformations. From the point of view of this book that judgement misses something.
Content:
Front Matter....Pages I-XV
Measure Spaces....Pages 1-3
Kernels....Pages 4-7
Domains....Pages 8-16
Boundedness....Pages 17-20
Examples....Pages 21-26
Isomorphisms....Pages 27-31
Algebra....Pages 32-38
Uniqueness....Pages 39-42
Tensors....Pages 43-49
Absolute Boundedness....Pages 50-58
Carleman Kernels....Pages 59-71
Compactness....Pages 72-75
<2, 1> Compactness....Pages 76-84
Essential Spectrum....Pages 85-94
Characterization....Pages 95-104
Universality....Pages 105-110
Recognition....Pages 111-118
Back Matter....Pages 119-134
Content:
Front Matter....Pages I-XV
Measure Spaces....Pages 1-3
Kernels....Pages 4-7
Domains....Pages 8-16
Boundedness....Pages 17-20
Examples....Pages 21-26
Isomorphisms....Pages 27-31
Algebra....Pages 32-38
Uniqueness....Pages 39-42
Tensors....Pages 43-49
Absolute Boundedness....Pages 50-58
Carleman Kernels....Pages 59-71
Compactness....Pages 72-75
<2, 1> Compactness....Pages 76-84
Essential Spectrum....Pages 85-94
Characterization....Pages 95-104
Universality....Pages 105-110
Recognition....Pages 111-118
Back Matter....Pages 119-134
....