Ebook: Classical and Quantum Dynamics: from Classical Paths to Path Integrals
- Tags: Statistical Physics Dynamical Systems and Complexity, Quantum Information Technology Spintronics, Quantum Physics
- Year: 1994
- Publisher: Springer Berlin Heidelberg
- Language: English
- pdf
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, together with many worked examples throughout the text. This second edition has been enlarged by a new chapter on topological phases in planar electrodynamics and a discussion of the Aharonov-Bohm effect.
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, together with many worked examples throughout the text. This second edition has been enlarged by a new chapter on topological phases in planar electrodynamics and a discussion of the Aharonov-Bohm effect.
Content:
Front Matter....Pages I-IX
Introduction....Pages 1-2
The Action Principles in Mechanics....Pages 3-14
Application of the Action Principles....Pages 15-33
Jacobi Fields, Conjugate Points....Pages 35-45
Canonical Transformations....Pages 47-60
The Hamilton-Jacobi Equation....Pages 61-73
Action-Angle Variables....Pages 75-96
The Adiabatic Invariance of the Action Variables....Pages 97-107
Time-Independent Canonical Perturbation Theory....Pages 109-115
Canonical Perturbation Theory with Several Degrees of Freedom....Pages 117-129
Canonical Adiabatic Theory....Pages 131-136
Removal of Resonances....Pages 137-145
Superconvergent Perturbation Theory, KAM Theorem (Introduction)....Pages 147-154
Poincar? Surface of Sections, Mappings....Pages 155-163
The KAM Theorem....Pages 165-171
Fundamental Principles of Quantum Mechanics....Pages 173-177
Examples for Calculating Path Integrals....Pages 179-198
Direct Evaluation of Path Integrals....Pages 199-208
Linear Oscillator with Time-Dependent Frequency....Pages 209-223
Propagators for Particles in an External Magnetic Field....Pages 225-229
Simple Applications of Propagator Functions....Pages 231-246
The WKB Approximation....Pages 247-256
Partition Function for the Harmonic Oscillator....Pages 257-262
Introduction to Homotopy Theory....Pages 263-267
Classical Chern-Simons Mechanics....Pages 269-279
Semiclassical Quantization....Pages 281-286
The “Maslov Anomaly” for the Harmonic Oscillator....Pages 287-294
Maslov Anomaly and the Morse Index Theorem....Pages 295-300
Berry’s Phase....Pages 301-316
Classical Analogues to Berry’s Phase....Pages 317-332
Berry Phase and Parametric Harmonic Oscillator....Pages 333-345
Topological Phases in Planar Electrodynamics....Pages 347-355
Back Matter....Pages 357-361
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, together with many worked examples throughout the text. This second edition has been enlarged by a new chapter on topological phases in planar electrodynamics and a discussion of the Aharonov-Bohm effect.
Content:
Front Matter....Pages I-IX
Introduction....Pages 1-2
The Action Principles in Mechanics....Pages 3-14
Application of the Action Principles....Pages 15-33
Jacobi Fields, Conjugate Points....Pages 35-45
Canonical Transformations....Pages 47-60
The Hamilton-Jacobi Equation....Pages 61-73
Action-Angle Variables....Pages 75-96
The Adiabatic Invariance of the Action Variables....Pages 97-107
Time-Independent Canonical Perturbation Theory....Pages 109-115
Canonical Perturbation Theory with Several Degrees of Freedom....Pages 117-129
Canonical Adiabatic Theory....Pages 131-136
Removal of Resonances....Pages 137-145
Superconvergent Perturbation Theory, KAM Theorem (Introduction)....Pages 147-154
Poincar? Surface of Sections, Mappings....Pages 155-163
The KAM Theorem....Pages 165-171
Fundamental Principles of Quantum Mechanics....Pages 173-177
Examples for Calculating Path Integrals....Pages 179-198
Direct Evaluation of Path Integrals....Pages 199-208
Linear Oscillator with Time-Dependent Frequency....Pages 209-223
Propagators for Particles in an External Magnetic Field....Pages 225-229
Simple Applications of Propagator Functions....Pages 231-246
The WKB Approximation....Pages 247-256
Partition Function for the Harmonic Oscillator....Pages 257-262
Introduction to Homotopy Theory....Pages 263-267
Classical Chern-Simons Mechanics....Pages 269-279
Semiclassical Quantization....Pages 281-286
The “Maslov Anomaly” for the Harmonic Oscillator....Pages 287-294
Maslov Anomaly and the Morse Index Theorem....Pages 295-300
Berry’s Phase....Pages 301-316
Classical Analogues to Berry’s Phase....Pages 317-332
Berry Phase and Parametric Harmonic Oscillator....Pages 333-345
Topological Phases in Planar Electrodynamics....Pages 347-355
Back Matter....Pages 357-361
....
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, together with many worked examples throughout the text. This second edition has been enlarged by a new chapter on topological phases in planar electrodynamics and a discussion of the Aharonov-Bohm effect.
Content:
Front Matter....Pages I-IX
Introduction....Pages 1-2
The Action Principles in Mechanics....Pages 3-14
Application of the Action Principles....Pages 15-33
Jacobi Fields, Conjugate Points....Pages 35-45
Canonical Transformations....Pages 47-60
The Hamilton-Jacobi Equation....Pages 61-73
Action-Angle Variables....Pages 75-96
The Adiabatic Invariance of the Action Variables....Pages 97-107
Time-Independent Canonical Perturbation Theory....Pages 109-115
Canonical Perturbation Theory with Several Degrees of Freedom....Pages 117-129
Canonical Adiabatic Theory....Pages 131-136
Removal of Resonances....Pages 137-145
Superconvergent Perturbation Theory, KAM Theorem (Introduction)....Pages 147-154
Poincar? Surface of Sections, Mappings....Pages 155-163
The KAM Theorem....Pages 165-171
Fundamental Principles of Quantum Mechanics....Pages 173-177
Examples for Calculating Path Integrals....Pages 179-198
Direct Evaluation of Path Integrals....Pages 199-208
Linear Oscillator with Time-Dependent Frequency....Pages 209-223
Propagators for Particles in an External Magnetic Field....Pages 225-229
Simple Applications of Propagator Functions....Pages 231-246
The WKB Approximation....Pages 247-256
Partition Function for the Harmonic Oscillator....Pages 257-262
Introduction to Homotopy Theory....Pages 263-267
Classical Chern-Simons Mechanics....Pages 269-279
Semiclassical Quantization....Pages 281-286
The “Maslov Anomaly” for the Harmonic Oscillator....Pages 287-294
Maslov Anomaly and the Morse Index Theorem....Pages 295-300
Berry’s Phase....Pages 301-316
Classical Analogues to Berry’s Phase....Pages 317-332
Berry Phase and Parametric Harmonic Oscillator....Pages 333-345
Topological Phases in Planar Electrodynamics....Pages 347-355
Back Matter....Pages 357-361
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, together with many worked examples throughout the text. This second edition has been enlarged by a new chapter on topological phases in planar electrodynamics and a discussion of the Aharonov-Bohm effect.
Content:
Front Matter....Pages I-IX
Introduction....Pages 1-2
The Action Principles in Mechanics....Pages 3-14
Application of the Action Principles....Pages 15-33
Jacobi Fields, Conjugate Points....Pages 35-45
Canonical Transformations....Pages 47-60
The Hamilton-Jacobi Equation....Pages 61-73
Action-Angle Variables....Pages 75-96
The Adiabatic Invariance of the Action Variables....Pages 97-107
Time-Independent Canonical Perturbation Theory....Pages 109-115
Canonical Perturbation Theory with Several Degrees of Freedom....Pages 117-129
Canonical Adiabatic Theory....Pages 131-136
Removal of Resonances....Pages 137-145
Superconvergent Perturbation Theory, KAM Theorem (Introduction)....Pages 147-154
Poincar? Surface of Sections, Mappings....Pages 155-163
The KAM Theorem....Pages 165-171
Fundamental Principles of Quantum Mechanics....Pages 173-177
Examples for Calculating Path Integrals....Pages 179-198
Direct Evaluation of Path Integrals....Pages 199-208
Linear Oscillator with Time-Dependent Frequency....Pages 209-223
Propagators for Particles in an External Magnetic Field....Pages 225-229
Simple Applications of Propagator Functions....Pages 231-246
The WKB Approximation....Pages 247-256
Partition Function for the Harmonic Oscillator....Pages 257-262
Introduction to Homotopy Theory....Pages 263-267
Classical Chern-Simons Mechanics....Pages 269-279
Semiclassical Quantization....Pages 281-286
The “Maslov Anomaly” for the Harmonic Oscillator....Pages 287-294
Maslov Anomaly and the Morse Index Theorem....Pages 295-300
Berry’s Phase....Pages 301-316
Classical Analogues to Berry’s Phase....Pages 317-332
Berry Phase and Parametric Harmonic Oscillator....Pages 333-345
Topological Phases in Planar Electrodynamics....Pages 347-355
Back Matter....Pages 357-361
....
Download the book Classical and Quantum Dynamics: from Classical Paths to Path Integrals for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)