Ebook: Riemannian Geometry
- Tags: Differential Geometry, Manifolds and Cell Complexes (incl. Diff.Topology), Mathematical Methods in Physics, Numerical and Computational Physics
- Series: Universitext
- Year: 1987
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP'S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop's inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop's inequality and coarse estimates 181 Some consequences of Bishop's theorem 182 Lower bounds for the first eigenvalue 184 CHAPTER V : RIEMANNIAN SUBMANIFOLDS A. CURVATURE OF SUBMANIFOLDS Introduction 185 Second fundamental form 185 Curvature of hypersurfaces 187 Application to explicit computations of curvature 189 B. CURVATURE AND CONVEXITY 192 The Hadamard theorem C.
This book, based on a graduate course on Riemannian geometry and analysis on manifolds, held in Paris, covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. Classical results on the relations between curvature and topology are treated in detail. The book is quite self-contained, assuming of the reader only differential calculus in Euclidean space. It contains numerous exercises with full solutions and a series of detailed examples which are picked up repeatedly to illustrate each new definition or property introduced.
This book, based on a graduate course on Riemannian geometry and analysis on manifolds, held in Paris, covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. Classical results on the relations between curvature and topology are treated in detail. The book is quite self-contained, assuming of the reader only differential calculus in Euclidean space. It contains numerous exercises with full solutions and a series of detailed examples which are picked up repeatedly to illustrate each new definition or property introduced.
Content:
Front Matter....Pages I-XI
Differential Manifolds....Pages 1-48
Riemannian Metrics....Pages 49-101
Curvature....Pages 102-154
Analysis on Manifolds and the Ricci Curvature....Pages 155-184
Riemannian Submanifolds....Pages 185-240
Back Matter....Pages 241-250
This book, based on a graduate course on Riemannian geometry and analysis on manifolds, held in Paris, covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. Classical results on the relations between curvature and topology are treated in detail. The book is quite self-contained, assuming of the reader only differential calculus in Euclidean space. It contains numerous exercises with full solutions and a series of detailed examples which are picked up repeatedly to illustrate each new definition or property introduced.
Content:
Front Matter....Pages I-XI
Differential Manifolds....Pages 1-48
Riemannian Metrics....Pages 49-101
Curvature....Pages 102-154
Analysis on Manifolds and the Ricci Curvature....Pages 155-184
Riemannian Submanifolds....Pages 185-240
Back Matter....Pages 241-250
....