Ebook: New Foundations for Classical Mechanics
Author: David Hestenes (auth.)
- Tags: Mechanics, Applications of Mathematics, Astronomy Observations and Techniques
- Series: Fundamental Theories of Physics 15
- Year: 1986
- Publisher: Springer Netherlands
- Edition: 1
- Language: English
- pdf
This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applica tions matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Content:
Front Matter....Pages i-xi
Origins of Geometric Algebra....Pages 1-38
Developments in Geometric Algebra....Pages 39-119
Mechanics of a Single Particle....Pages 120-194
Central Forces and Two-Particle Systems....Pages 195-251
Operators and Transformations....Pages 252-333
Many-Particle Systems....Pages 334-418
Rigid Body Mechanics....Pages 419-511
Celestial Mechanics....Pages 512-573
Foundations of Mechanics....Pages 574-602
Back Matter....Pages 603-644
Content:
Front Matter....Pages i-xi
Origins of Geometric Algebra....Pages 1-38
Developments in Geometric Algebra....Pages 39-119
Mechanics of a Single Particle....Pages 120-194
Central Forces and Two-Particle Systems....Pages 195-251
Operators and Transformations....Pages 252-333
Many-Particle Systems....Pages 334-418
Rigid Body Mechanics....Pages 419-511
Celestial Mechanics....Pages 512-573
Foundations of Mechanics....Pages 574-602
Back Matter....Pages 603-644
....