Online Library TheLib.net » Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
cover of the book Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Ebook: Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

00
27.01.2024
0
0

This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.




Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.

This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.

Topics and features:

  • Reviews the application of machine learning to process monitoring and fault diagnosis
  • Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods
  • Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning
  • Describes the use of spectral methods in process fault diagnosis

This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.




Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.

This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.

Topics and features:

  • Reviews the application of machine learning to process monitoring and fault diagnosis
  • Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods
  • Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning
  • Describes the use of spectral methods in process fault diagnosis

This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.


Content:
Front Matter....Pages i-xix
Introduction....Pages 1-15
Overview of Process Fault Diagnosis....Pages 17-70
Artificial Neural Networks....Pages 71-115
Statistical Learning Theory and Kernel-Based Methods....Pages 117-181
Tree-Based Methods....Pages 183-220
Fault Diagnosis in Steady-State Process Systems....Pages 221-279
Dynamic Process Monitoring....Pages 281-339
Process Monitoring Using Multiscale Methods....Pages 341-369
Back Matter....Pages 371-374


Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data.

This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections.

Topics and features:

  • Reviews the application of machine learning to process monitoring and fault diagnosis
  • Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods
  • Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning
  • Describes the use of spectral methods in process fault diagnosis

This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning.

Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa.


Content:
Front Matter....Pages i-xix
Introduction....Pages 1-15
Overview of Process Fault Diagnosis....Pages 17-70
Artificial Neural Networks....Pages 71-115
Statistical Learning Theory and Kernel-Based Methods....Pages 117-181
Tree-Based Methods....Pages 183-220
Fault Diagnosis in Steady-State Process Systems....Pages 221-279
Dynamic Process Monitoring....Pages 281-339
Process Monitoring Using Multiscale Methods....Pages 341-369
Back Matter....Pages 371-374
....
Download the book Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods for free or read online
Read Download
Continue reading on any device:
QR code
Related books
Comments (0)
reload, if the code cannot be seen