![cover of the book Synchronization in Real-Time Systems: A Priority Inheritance Approach](/covers/files_200/963000/f375b0887c005ed72c72742da8085380-d.jpg)
Ebook: Synchronization in Real-Time Systems: A Priority Inheritance Approach
Author: Ragunathan Rajkumar (auth.)
- Tags: Special Purpose and Application-Based Systems, Software Engineering/Programming and Operating Systems, Programming Languages Compilers Interpreters, Operating Systems, Processor Architectures
- Series: The Springer International Series in Engineering and Computer Science 151
- Year: 1991
- Publisher: Springer US
- Edition: 1
- Language: English
- pdf
Real-time computing systems are vital to a wide range of applications. For example, they are used in the control of nuclear reactors and automated manufacturing facilities, in controlling and tracking air traffic, and in communication systems. In recent years, real-time systems have also grown larger and become more critical. For instance, advanced aircraft such as the space shuttle must depend heavily on computer sys tems [Carlow 84]. The centralized control of manufacturing facilities and assembly plants operated by robots are other examples at the heart of which lie embedded real-time systems. Military defense systems deployed in the air, on the ocean surface, land and underwater, have also been increasingly relying upon real-time systems for monitoring and operational safety purposes, and for retaliatory and containment measures. In telecommunications and in multi-media applications, real time characteristics are essential to maintain the integrity of transmitted data, audio and video signals. Many of these systems control, monitor or perform critical operations, and must respond quickly to emergency events in a wide range of embedded applications. They are therefore required to process tasks with stringent timing requirements and must perform these tasks in a way that these timing requirements are guaranteed to be met. Real-time scheduling al gorithms attempt to ensure that system timing behavior meets its specifications, but typically assume that tasks do not share logical or physical resources. Since resource-sharing cannot be eliminated, synchronization primitives must be used to ensure that resource consis tency constraints are not violated.
Content:
Front Matter....Pages i-xix
Introduction....Pages 1-14
Real-Time Synchronization in Uniprocessors....Pages 15-59
Synchronization in Multiple Processor Systems....Pages 61-118
Distributed Real-Time Databases....Pages 119-140
Conclusion....Pages 141-148
Content:
Front Matter....Pages i-xix
Introduction....Pages 1-14
Real-Time Synchronization in Uniprocessors....Pages 15-59
Synchronization in Multiple Processor Systems....Pages 61-118
Distributed Real-Time Databases....Pages 119-140
Conclusion....Pages 141-148
....