Ebook: Computational Methods for General Sparse Matrices
Author: Zahari Zlatev (auth.)
- Tags: Numeric Computing, Theory of Computation, Linear and Multilinear Algebras Matrix Theory, Partial Differential Equations
- Series: Mathematics and Its Applications 65
- Year: 1991
- Publisher: Springer Netherlands
- Edition: 1
- Language: English
- pdf
Content:
Front Matter....Pages i-xix
Exploiting Sparsity....Pages 1-8
Storage Schemes....Pages 9-44
General Scheme for Linear Algebraic Problems....Pages 45-65
Pivotal Strategies for Gaussian Elimination....Pages 67-86
Use of Iterative Refinement in the GE Process....Pages 87-108
Implementation of the Algorithms....Pages 109-120
Solving Least Squares Problems by Augmentation....Pages 121-130
Sparse Matrix Technique for Ordinary Differential Equations....Pages 131-154
Condition Number Estimators in a Sparse Matrix Software....Pages 155-172
Parallel Direct Solvers....Pages 173-198
Parallel Orthomin for General Sparse Matrices....Pages 199-214
Orthogonalization Methods....Pages 215-232
Two Storage Schemes for Givens Plane Rotations....Pages 233-242
Pivotal Strategies for Givens Plane Rotations....Pages 243-258
Iterative Refinement after the Plane Rotations....Pages 259-267
Preconditioned Conjugate Gradients for Givens Plane Rotations....Pages 269-294
Back Matter....Pages 295-328
Content:
Front Matter....Pages i-xix
Exploiting Sparsity....Pages 1-8
Storage Schemes....Pages 9-44
General Scheme for Linear Algebraic Problems....Pages 45-65
Pivotal Strategies for Gaussian Elimination....Pages 67-86
Use of Iterative Refinement in the GE Process....Pages 87-108
Implementation of the Algorithms....Pages 109-120
Solving Least Squares Problems by Augmentation....Pages 121-130
Sparse Matrix Technique for Ordinary Differential Equations....Pages 131-154
Condition Number Estimators in a Sparse Matrix Software....Pages 155-172
Parallel Direct Solvers....Pages 173-198
Parallel Orthomin for General Sparse Matrices....Pages 199-214
Orthogonalization Methods....Pages 215-232
Two Storage Schemes for Givens Plane Rotations....Pages 233-242
Pivotal Strategies for Givens Plane Rotations....Pages 243-258
Iterative Refinement after the Plane Rotations....Pages 259-267
Preconditioned Conjugate Gradients for Givens Plane Rotations....Pages 269-294
Back Matter....Pages 295-328
....
Download the book Computational Methods for General Sparse Matrices for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)