Ebook: Pipelined Lattice and Wave Digital Recursive Filters
- Tags: Circuits and Systems, Signal Image and Speech Processing, Electrical Engineering
- Series: The Kluwer International Series in Engineering and Computer Science 344
- Year: 1996
- Publisher: Springer US
- Edition: 1
- Language: English
- pdf
Pipelined Lattice and Wave Digital Recursive Filters uses look-ahead transformation and constrained filter design approaches. It is also shown that pipelining often reduces the roundoff noise in a digital filter. The pipelined recursive lattice and wave digital filters presented are well suited where increasing speed and reducing area or power or roundoff noise are important. Examples are wireless and cellular codec applications, where low power consumption is important, and radar and video applications, where higher speed is important.
The book presents pipelining of direct-form recursive digital filters and demonstrates the usefulness of these topologies in high-speed and low-power applications. It then discusses fundamentals of scaling in the design of lattice and wave digital filters. Approaches to designing four different types of lattice digital filters are discussed, including basic, one-multiplier, normalized, and scaled normalized structures. The roundoff noise in these lattice filters is also studied. The book then presents approaches to the design of pipelined lattice digital filters for the same four types of structures, followed by pipelining of orthogonal double-rotation digital filters, which eliminate limit cycle problems. A discussion of pipelining of lattice wave digital filters follows, showing how linear phase, narrow-band, sharp-transition recursive filters can be implemented using this structure. This example is motivated by a difficult filter design problem in a wireless codec application. Finally, pipelining of ladder wave digital filters is discussed.
Pipelined Lattice and Wave Digital Recursive Filters serves as an excellent reference and may be used as a text for advanced courses on the subject.
Pipelined Lattice and Wave Digital Recursive Filters uses look-ahead transformation and constrained filter design approaches. It is also shown that pipelining often reduces the roundoff noise in a digital filter. The pipelined recursive lattice and wave digital filters presented are well suited where increasing speed and reducing area or power or roundoff noise are important. Examples are wireless and cellular codec applications, where low power consumption is important, and radar and video applications, where higher speed is important.
The book presents pipelining of direct-form recursive digital filters and demonstrates the usefulness of these topologies in high-speed and low-power applications. It then discusses fundamentals of scaling in the design of lattice and wave digital filters. Approaches to designing four different types of lattice digital filters are discussed, including basic, one-multiplier, normalized, and scaled normalized structures. The roundoff noise in these lattice filters is also studied. The book then presents approaches to the design of pipelined lattice digital filters for the same four types of structures, followed by pipelining of orthogonal double-rotation digital filters, which eliminate limit cycle problems. A discussion of pipelining of lattice wave digital filters follows, showing how linear phase, narrow-band, sharp-transition recursive filters can be implemented using this structure. This example is motivated by a difficult filter design problem in a wireless codec application. Finally, pipelining of ladder wave digital filters is discussed.
Pipelined Lattice and Wave Digital Recursive Filters serves as an excellent reference and may be used as a text for advanced courses on the subject.
Pipelined Lattice and Wave Digital Recursive Filters uses look-ahead transformation and constrained filter design approaches. It is also shown that pipelining often reduces the roundoff noise in a digital filter. The pipelined recursive lattice and wave digital filters presented are well suited where increasing speed and reducing area or power or roundoff noise are important. Examples are wireless and cellular codec applications, where low power consumption is important, and radar and video applications, where higher speed is important.
The book presents pipelining of direct-form recursive digital filters and demonstrates the usefulness of these topologies in high-speed and low-power applications. It then discusses fundamentals of scaling in the design of lattice and wave digital filters. Approaches to designing four different types of lattice digital filters are discussed, including basic, one-multiplier, normalized, and scaled normalized structures. The roundoff noise in these lattice filters is also studied. The book then presents approaches to the design of pipelined lattice digital filters for the same four types of structures, followed by pipelining of orthogonal double-rotation digital filters, which eliminate limit cycle problems. A discussion of pipelining of lattice wave digital filters follows, showing how linear phase, narrow-band, sharp-transition recursive filters can be implemented using this structure. This example is motivated by a difficult filter design problem in a wireless codec application. Finally, pipelining of ladder wave digital filters is discussed.
Pipelined Lattice and Wave Digital Recursive Filters serves as an excellent reference and may be used as a text for advanced courses on the subject.
Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-12
Pipeline Interleaving in Digital Filters....Pages 13-19
Pipelining Direct Form Recursive Digital Filters....Pages 21-47
Roundoff Noise in Pipelined Recursive Digital Filters....Pages 49-77
Schur Algorithm....Pages 79-92
Digital Lattice Filter Structures....Pages 93-126
Pipelining of Lattice IIR Digital Filters....Pages 127-148
Pipelining of Orthogonal Double-Rotation Digital Lattice Filters....Pages 149-157
Pipelined Lattice WDF Design for Wideband Digital Filters....Pages 159-178
Synthesis and Pipelining of Ladder WDFs in Digital Domain....Pages 179-198
Back Matter....Pages 199-223
Pipelined Lattice and Wave Digital Recursive Filters uses look-ahead transformation and constrained filter design approaches. It is also shown that pipelining often reduces the roundoff noise in a digital filter. The pipelined recursive lattice and wave digital filters presented are well suited where increasing speed and reducing area or power or roundoff noise are important. Examples are wireless and cellular codec applications, where low power consumption is important, and radar and video applications, where higher speed is important.
The book presents pipelining of direct-form recursive digital filters and demonstrates the usefulness of these topologies in high-speed and low-power applications. It then discusses fundamentals of scaling in the design of lattice and wave digital filters. Approaches to designing four different types of lattice digital filters are discussed, including basic, one-multiplier, normalized, and scaled normalized structures. The roundoff noise in these lattice filters is also studied. The book then presents approaches to the design of pipelined lattice digital filters for the same four types of structures, followed by pipelining of orthogonal double-rotation digital filters, which eliminate limit cycle problems. A discussion of pipelining of lattice wave digital filters follows, showing how linear phase, narrow-band, sharp-transition recursive filters can be implemented using this structure. This example is motivated by a difficult filter design problem in a wireless codec application. Finally, pipelining of ladder wave digital filters is discussed.
Pipelined Lattice and Wave Digital Recursive Filters serves as an excellent reference and may be used as a text for advanced courses on the subject.
Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-12
Pipeline Interleaving in Digital Filters....Pages 13-19
Pipelining Direct Form Recursive Digital Filters....Pages 21-47
Roundoff Noise in Pipelined Recursive Digital Filters....Pages 49-77
Schur Algorithm....Pages 79-92
Digital Lattice Filter Structures....Pages 93-126
Pipelining of Lattice IIR Digital Filters....Pages 127-148
Pipelining of Orthogonal Double-Rotation Digital Lattice Filters....Pages 149-157
Pipelined Lattice WDF Design for Wideband Digital Filters....Pages 159-178
Synthesis and Pipelining of Ladder WDFs in Digital Domain....Pages 179-198
Back Matter....Pages 199-223
....