Ebook: Discourses on Algebra
Author: Igor R. Shafarevich (auth.)
- Tags: Algebra, Number Theory
- Series: Universitext
- Year: 2003
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
I wish that algebra would be the Cinderella ofour story. In the math ematics program in schools, geometry has often been the favorite daugh ter. The amount of geometric knowledge studied in schools is approx imately equal to the level achieved in ancient Greece and summarized by Euclid in his Elements (third century B. C. ). For a long time, geom etry was taught according to Euclid; simplified variants have recently appeared. In spite of all the changes introduced in geometry cours es, geometry retains the influence of Euclid and the inclination of the grandiose scientific revolution that occurred in Greece. More than once I have met a person who said, "I didn't choose math as my profession, but I'll never forget the beauty of the elegant edifice built in geometry with its strict deduction of more and more complicated propositions, all beginning from the very simplest, most obvious statements!" Unfortunately, I have never heard a similar assessment concerning al gebra. Algebra courses in schools comprise a strange mixture of useful rules, logical judgments, and exercises in using aids such as tables of log arithms and pocket calculators. Such a course is closer in spirit to the brand of mathematics developed in ancient Egypt and Babylon than to the line of development that appeared in ancient Greece and then con tinued from the Renaissance in western Europe. Nevertheless, algebra is just as fundamental, just as deep, and just as beautiful as geometry.
The classic geometry of Euclid has attracted many for its beauty, elegance, and logical cohesion. In this book, the leading Russian algebraist I.R. Shafarevich argues with examples that algebra is no less beautiful, elegant, and logically cohesive than geometry.
It contains an exposition of some rudiments of algebra, number theory, set theory and probability presupposing very limited knowledge of mathematics. I.R. Shafarevich is known to be one of the leading mathematicians of the 20th century, as well as one of the best mathematical writers.
The classic geometry of Euclid has attracted many for its beauty, elegance, and logical cohesion. In this book, the leading Russian algebraist I.R. Shafarevich argues with examples that algebra is no less beautiful, elegant, and logically cohesive than geometry.
It contains an exposition of some rudiments of algebra, number theory, set theory and probability presupposing very limited knowledge of mathematics. I.R. Shafarevich is known to be one of the leading mathematicians of the 20th century, as well as one of the best mathematical writers.
Content:
Front Matter....Pages I-X
Integers....Pages 1-26
Simplest Properties of Polynomials....Pages 27-66
Finite Sets....Pages 67-116
Prime Numbers....Pages 117-140
Real Numbers and Polynomials....Pages 141-182
Infinite Sets....Pages 183-222
Power Series....Pages 223-269
Back Matter....Pages 271-279
The classic geometry of Euclid has attracted many for its beauty, elegance, and logical cohesion. In this book, the leading Russian algebraist I.R. Shafarevich argues with examples that algebra is no less beautiful, elegant, and logically cohesive than geometry.
It contains an exposition of some rudiments of algebra, number theory, set theory and probability presupposing very limited knowledge of mathematics. I.R. Shafarevich is known to be one of the leading mathematicians of the 20th century, as well as one of the best mathematical writers.
Content:
Front Matter....Pages I-X
Integers....Pages 1-26
Simplest Properties of Polynomials....Pages 27-66
Finite Sets....Pages 67-116
Prime Numbers....Pages 117-140
Real Numbers and Polynomials....Pages 141-182
Infinite Sets....Pages 183-222
Power Series....Pages 223-269
Back Matter....Pages 271-279
....