cover of the book Analysis 2

Ebook: Analysis 2

00
27.01.2024
0
0
Dieser zweite Band Analysis, der nunmehr in vierter, ?berarbeiteter Auflage vorliegt, behandelt die Differential- und Integralrechnung im Rn sowie Differentialgleichungen und Elemente der Funktionentheorie. Zu den Besonderheiten dieses Lehrbuches geh?ren eine neue, einfache Einf?hrung des Lebesgueintegrals und eine Version des Gau?schen Integralsatzes, die Integrationsbereiche in hinreichender Allgemeinheit zugrunde legt. Ein umfangreiches Kapitel ist dem Kalk?l der Differentialformen samt Satz von Stokes gewidmet und als Einstieg in die Theorie der differenzierbaren Mannigfaltigkeiten konzipiert. Historische Anmerkungen und Ausblicke lockern den Text auf. Die vielen Abbildungen und Beispiele erleichtern das Verst?ndnis, zahlreiche Aufgaben sind zur Ein?bung und Vertiefung bereitgestellt. Insgesamt ein Lehrbuch, das sich als Begleittext zu einer Vorlesung wie auch zum Selbststudium hervorragend eignet.


Dieser zweite Band Analysis, der nunmehr in vierter, ?berarbeiteter Auflage vorliegt, behandelt die Differential- und Integralrechnung im Rn sowie Differentialgleichungen und Elemente der Funktionentheorie. Zu den Besonderheiten dieses Lehrbuches geh?ren eine neue, einfache Einf?hrung des Lebesgueintegrals und eine Version des Gau?schen Integralsatzes, die Integrationsbereiche in hinreichender Allgemeinheit zugrunde legt. Ein umfangreiches Kapitel ist dem Kalk?l der Differentialformen samt Satz von Stokes gewidmet und als Einstieg in die Theorie der differenzierbaren Mannigfaltigkeiten konzipiert. Historische Anmerkungen und Ausblicke lockern den Text auf. Die vielen Abbildungen und Beispiele erleichtern das Verst?ndnis, zahlreiche Aufgaben sind zur Ein?bung und Vertiefung bereitgestellt. Insgesamt ein Lehrbuch, das sich als Begleittext zu einer Vorlesung wie auch zum Selbststudium hervorragend eignet.
Content:
Front Matter....Pages I-XII
Elemente der Topologie....Pages 1-44
Differenzierbare Funktionen....Pages 45-86
Differenzierbare Abbildungen....Pages 87-130
Vektorfelder....Pages 131-176
Felder von Linearformen, Pfaffsche Formen. Kurvenintegrale....Pages 177-196
Die Fundamentals?tze der Funktionentheorie....Pages 197-234
Das Lebesgue-Integral....Pages 235-268
Vollst?ndigkeit des Lebesgue-Integrals. Konvergenzs?tze und der Satz von Fubini....Pages 269-298
Der Transformationssatz....Pages 299-316
Anwendungen der Integralrechnung....Pages 317-345
Integration ?ber Untermannigfaltigkeiten des euklidischen ? n ....Pages 346-376
Der Integralsatz von Gau?....Pages 377-398
Der Integralsatz von Stokes....Pages 399-444
Back Matter....Pages 445-461


Dieser zweite Band Analysis, der nunmehr in vierter, ?berarbeiteter Auflage vorliegt, behandelt die Differential- und Integralrechnung im Rn sowie Differentialgleichungen und Elemente der Funktionentheorie. Zu den Besonderheiten dieses Lehrbuches geh?ren eine neue, einfache Einf?hrung des Lebesgueintegrals und eine Version des Gau?schen Integralsatzes, die Integrationsbereiche in hinreichender Allgemeinheit zugrunde legt. Ein umfangreiches Kapitel ist dem Kalk?l der Differentialformen samt Satz von Stokes gewidmet und als Einstieg in die Theorie der differenzierbaren Mannigfaltigkeiten konzipiert. Historische Anmerkungen und Ausblicke lockern den Text auf. Die vielen Abbildungen und Beispiele erleichtern das Verst?ndnis, zahlreiche Aufgaben sind zur Ein?bung und Vertiefung bereitgestellt. Insgesamt ein Lehrbuch, das sich als Begleittext zu einer Vorlesung wie auch zum Selbststudium hervorragend eignet.
Content:
Front Matter....Pages I-XII
Elemente der Topologie....Pages 1-44
Differenzierbare Funktionen....Pages 45-86
Differenzierbare Abbildungen....Pages 87-130
Vektorfelder....Pages 131-176
Felder von Linearformen, Pfaffsche Formen. Kurvenintegrale....Pages 177-196
Die Fundamentals?tze der Funktionentheorie....Pages 197-234
Das Lebesgue-Integral....Pages 235-268
Vollst?ndigkeit des Lebesgue-Integrals. Konvergenzs?tze und der Satz von Fubini....Pages 269-298
Der Transformationssatz....Pages 299-316
Anwendungen der Integralrechnung....Pages 317-345
Integration ?ber Untermannigfaltigkeiten des euklidischen ? n ....Pages 346-376
Der Integralsatz von Gau?....Pages 377-398
Der Integralsatz von Stokes....Pages 399-444
Back Matter....Pages 445-461
....
Download the book Analysis 2 for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen