Online Library TheLib.net » Lundberg Approximations for Compound Distributions with Insurance Applications
cover of the book Lundberg Approximations for Compound Distributions with Insurance Applications

Ebook: Lundberg Approximations for Compound Distributions with Insurance Applications

00
27.01.2024
0
0

These notes represent our summary of much of the recent research that has been done in recent years on approximations and bounds that have been developed for compound distributions and related quantities which are of interest in insurance and other areas of application in applied probability. The basic technique employed in the derivation of many bounds is induc­ tive, an approach that is motivated by arguments used by Sparre-Andersen (1957) in connection with a renewal risk model in insurance. This technique is both simple and powerful, and yields quite general results. The bounds themselves are motivated by the classical Lundberg exponential bounds which apply to ruin probabilities, and the connection to compound dis­ tributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution. The initial exponential bounds were given in Willmot and Lin (1994), followed by the nonexpo­ nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. The results obtained or the arguments employed in these situations are similar to those for the compound distributions, and thus we felt it useful to include them in the notes. In many cases we have included exact results, since these are useful in conjunction with the bounds and approximations developed.




This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory. The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal.


This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory. The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal.
Content:
Front Matter....Pages i-x
Introduction....Pages 1-5
Reliability background....Pages 7-36
Mixed Poisson distributions....Pages 37-49
Compound distributions....Pages 51-80
Bounds based on reliability classifications....Pages 81-91
Parametric Bounds....Pages 93-105
Compound geometric and related distributions....Pages 107-140
Tijms approximations....Pages 141-149
Defective renewal equations....Pages 151-181
The severity of ruin....Pages 183-208
Renewal risk processes....Pages 209-234
Back Matter....Pages 235-252


This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory. The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal.
Content:
Front Matter....Pages i-x
Introduction....Pages 1-5
Reliability background....Pages 7-36
Mixed Poisson distributions....Pages 37-49
Compound distributions....Pages 51-80
Bounds based on reliability classifications....Pages 81-91
Parametric Bounds....Pages 93-105
Compound geometric and related distributions....Pages 107-140
Tijms approximations....Pages 141-149
Defective renewal equations....Pages 151-181
The severity of ruin....Pages 183-208
Renewal risk processes....Pages 209-234
Back Matter....Pages 235-252
....
Download the book Lundberg Approximations for Compound Distributions with Insurance Applications for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen