Online Library TheLib.net » Nonsmooth Analysis and Control Theory
cover of the book Nonsmooth Analysis and Control Theory

Ebook: Nonsmooth Analysis and Control Theory

00
27.01.2024
0
0

In the last decades the subject of nonsmooth analysis has grown rapidly due to the recognition that nondifferentiable phenomena are more widespread, and play a more important role, than had been thought. In recent years, it has come to play a role in functional analysis, optimization, optimal design, mechanics and plasticity, differential equations, control theory, and, increasingly, in analysis. This volume presents the essentials of the subject clearly and succinctly, together with some of its applications and a generous supply of interesting exercises. The book begins with an introductory chapter which gives the reader a sampling of what is to come while indicating at an early stage why the subject is of interest. The next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject leading to an efficient, natural, yet powerful body of theory. The last chapter, as its name implies, is a self-contained introduction to the theory of control of ordinary differential equations. End-of-chapter problems also offer scope for deeper understanding. The authors have incorporated in the text a number of new results which clarify the relationships between the different schools of thought in the subject. Their goal is to make nonsmooth analysis accessible to a wider audience. In this spirit, the book is written so as to be used by anyone who has taken a course in functional analysis.




In the last decades the subject of nonsmooth analysis has grown rapidly due to the recognition that nondifferentiable phenomena are more widespread, and play a more important role, than had been thought. In recent years, it has come to play a role in functional analysis, optimization, optimal design, mechanics and plasticity, differential equations, control theory, and, increasingly, in analysis. This volume presents the essentials of the subject clearly and succinctly, together with some of its applications and a generous supply of interesting exercises. The book begins with an introductory chapter which gives the reader a sampling of what is to come while indicating at an early stage why the subject is of interest. The next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject leading to an efficient, natural, yet powerful body of theory. The last chapter, as its name implies, is a self-contained introduction to the theory of control of ordinary differential equations. End-of-chapter problems also offer scope for deeper understanding. The authors have incorporated in the text a number of new results which clarify the relationships between the different schools of thought in the subject. Their goal is to make nonsmooth analysis accessible to a wider audience. In this spirit, the book is written so as to be used by anyone who has taken a course in functional analysis.


In the last decades the subject of nonsmooth analysis has grown rapidly due to the recognition that nondifferentiable phenomena are more widespread, and play a more important role, than had been thought. In recent years, it has come to play a role in functional analysis, optimization, optimal design, mechanics and plasticity, differential equations, control theory, and, increasingly, in analysis. This volume presents the essentials of the subject clearly and succinctly, together with some of its applications and a generous supply of interesting exercises. The book begins with an introductory chapter which gives the reader a sampling of what is to come while indicating at an early stage why the subject is of interest. The next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject leading to an efficient, natural, yet powerful body of theory. The last chapter, as its name implies, is a self-contained introduction to the theory of control of ordinary differential equations. End-of-chapter problems also offer scope for deeper understanding. The authors have incorporated in the text a number of new results which clarify the relationships between the different schools of thought in the subject. Their goal is to make nonsmooth analysis accessible to a wider audience. In this spirit, the book is written so as to be used by anyone who has taken a course in functional analysis.
Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-19
Proximal Calculus in Hilbert Space....Pages 21-68
Generalized Gradients in Banach Space....Pages 69-101
Special Topics....Pages 103-176
A Short Course in Control Theory....Pages 177-256
Back Matter....Pages 257-276


In the last decades the subject of nonsmooth analysis has grown rapidly due to the recognition that nondifferentiable phenomena are more widespread, and play a more important role, than had been thought. In recent years, it has come to play a role in functional analysis, optimization, optimal design, mechanics and plasticity, differential equations, control theory, and, increasingly, in analysis. This volume presents the essentials of the subject clearly and succinctly, together with some of its applications and a generous supply of interesting exercises. The book begins with an introductory chapter which gives the reader a sampling of what is to come while indicating at an early stage why the subject is of interest. The next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject leading to an efficient, natural, yet powerful body of theory. The last chapter, as its name implies, is a self-contained introduction to the theory of control of ordinary differential equations. End-of-chapter problems also offer scope for deeper understanding. The authors have incorporated in the text a number of new results which clarify the relationships between the different schools of thought in the subject. Their goal is to make nonsmooth analysis accessible to a wider audience. In this spirit, the book is written so as to be used by anyone who has taken a course in functional analysis.
Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-19
Proximal Calculus in Hilbert Space....Pages 21-68
Generalized Gradients in Banach Space....Pages 69-101
Special Topics....Pages 103-176
A Short Course in Control Theory....Pages 177-256
Back Matter....Pages 257-276
....
Download the book Nonsmooth Analysis and Control Theory for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen