Online Library TheLib.net » Idempotent Analysis and Its Applications

The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .




This monograph is about a branch of calculus the authors have called Idempotent Analysis, which deals with the semimodules of functions ranging in a semiring with idempotent addition. The theory is developed together with numerous applications to discrete mathematics, turnpike theory, mathematical economics, games and controlled Markov processes, the theory of generalised solutions of the Hamilton-Jacobi-Bellman differential equation, the theory of continuously observed and controlled quantum systems and the construction of WKB-like asymptotics of the heat equation and the Schr?dinger equation.
Audience: This book will be of interest to mathematicians, engineers, college teachers and students.


This monograph is about a branch of calculus the authors have called Idempotent Analysis, which deals with the semimodules of functions ranging in a semiring with idempotent addition. The theory is developed together with numerous applications to discrete mathematics, turnpike theory, mathematical economics, games and controlled Markov processes, the theory of generalised solutions of the Hamilton-Jacobi-Bellman differential equation, the theory of continuously observed and controlled quantum systems and the construction of WKB-like asymptotics of the heat equation and the Schr?dinger equation.
Audience: This book will be of interest to mathematicians, engineers, college teachers and students.
Content:
Front Matter....Pages i-xii
Idempotent Analysis....Pages 1-44
Analysis of Operators on Idempotent Semimodules....Pages 45-84
Generalized Solutions of Bellman’s Differential Equation....Pages 85-150
Quantization of the Bellman Equation and Multiplicative Asymptotics....Pages 151-231
Back Matter....Pages 233-308


This monograph is about a branch of calculus the authors have called Idempotent Analysis, which deals with the semimodules of functions ranging in a semiring with idempotent addition. The theory is developed together with numerous applications to discrete mathematics, turnpike theory, mathematical economics, games and controlled Markov processes, the theory of generalised solutions of the Hamilton-Jacobi-Bellman differential equation, the theory of continuously observed and controlled quantum systems and the construction of WKB-like asymptotics of the heat equation and the Schr?dinger equation.
Audience: This book will be of interest to mathematicians, engineers, college teachers and students.
Content:
Front Matter....Pages i-xii
Idempotent Analysis....Pages 1-44
Analysis of Operators on Idempotent Semimodules....Pages 45-84
Generalized Solutions of Bellman’s Differential Equation....Pages 85-150
Quantization of the Bellman Equation and Multiplicative Asymptotics....Pages 151-231
Back Matter....Pages 233-308
....
Download the book Idempotent Analysis and Its Applications for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen