Online Library TheLib.net » Physical Applications of Homogeneous Balls

One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry.

The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. It is shown that the set of all possible velocities is a BSD with respect to the projective group; the Lie algebra of this group, expressed as a triple product, defines relativistic dynamics. The particular BSD known as the spin factor is exhibited in two ways: first, as a triple representation of the Canonical Anticommutation Relations, and second, as a ball of symmetric velocities. The associated group is the conformal group, and the triple product on this domain gives a representation of the geometric product defined in Clifford algebras. It is explained why the state space of a two-state quantum mechanical system is the dual space of a spin factor. Ideas from Transmission Line Theory are used to derive the explicit form of the operator Mobius transformations. The book further provides a discussion of how to obtain a triple algebraic structure associated to an arbitrary BSD; the relation between the geometry of the domain and the algebraic structure is explored as well. The last chapter contains a classification of BSDs revealing the connection between the classical and the exceptional domains.

With its unifying approach to mathematics and physics, this work will be useful for researchers and graduate students interested in the many physical applications of bounded symmetric domains. It will also benefit a wider audience of mathematicians, physicists, and graduate students working in relativity, geometry, and Lie theory.




One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry.

The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. It is shown that the set of all possible velocities is a BSD with respect to the projective group; the Lie algebra of this group, expressed as a triple product, defines relativistic dynamics. The particular BSD known as the spin factor is exhibited in two ways: first, as a triple representation of the Canonical Anticommutation Relations, and second, as a ball of symmetric velocities. The associated group is the conformal group, and the triple product on this domain gives a representation of the geometric product defined in Clifford algebras. It is explained why the state space of a two-state quantum mechanical system is the dual space of a spin factor. Ideas from Transmission Line Theory are used to derive the explicit form of the operator Mobius transformations. The book further provides a discussion of how to obtain a triple algebraic structure associated to an arbitrary BSD; the relation between the geometry of the domain and the algebraic structure is explored as well. The last chapter contains a classification of BSDs revealing the connection between the classical and the exceptional domains.

With its unifying approach to mathematics and physics, this work will be useful for researchers and graduate students interested in the many physical applications of bounded symmetric domains. It will also benefit a wider audience of mathematicians, physicists, and graduate students working in relativity, geometry, and Lie theory.




One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry.

The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. It is shown that the set of all possible velocities is a BSD with respect to the projective group; the Lie algebra of this group, expressed as a triple product, defines relativistic dynamics. The particular BSD known as the spin factor is exhibited in two ways: first, as a triple representation of the Canonical Anticommutation Relations, and second, as a ball of symmetric velocities. The associated group is the conformal group, and the triple product on this domain gives a representation of the geometric product defined in Clifford algebras. It is explained why the state space of a two-state quantum mechanical system is the dual space of a spin factor. Ideas from Transmission Line Theory are used to derive the explicit form of the operator Mobius transformations. The book further provides a discussion of how to obtain a triple algebraic structure associated to an arbitrary BSD; the relation between the geometry of the domain and the algebraic structure is explored as well. The last chapter contains a classification of BSDs revealing the connection between the classical and the exceptional domains.

With its unifying approach to mathematics and physics, this work will be useful for researchers and graduate students interested in the many physical applications of bounded symmetric domains. It will also benefit a wider audience of mathematicians, physicists, and graduate students working in relativity, geometry, and Lie theory.


Content:
Front Matter....Pages i-xxiii
Relativity based on symmetry....Pages 1-53
The real spin domain....Pages 55-89
The complex spin factor and applications....Pages 91-151
The classical bounded symmetric domains....Pages 153-193
The algebraic structure of homogeneous balls....Pages 195-236
Classification of JBW *-triple factors....Pages 237-270
Back Matter....Pages 271-279


One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry.

The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. It is shown that the set of all possible velocities is a BSD with respect to the projective group; the Lie algebra of this group, expressed as a triple product, defines relativistic dynamics. The particular BSD known as the spin factor is exhibited in two ways: first, as a triple representation of the Canonical Anticommutation Relations, and second, as a ball of symmetric velocities. The associated group is the conformal group, and the triple product on this domain gives a representation of the geometric product defined in Clifford algebras. It is explained why the state space of a two-state quantum mechanical system is the dual space of a spin factor. Ideas from Transmission Line Theory are used to derive the explicit form of the operator Mobius transformations. The book further provides a discussion of how to obtain a triple algebraic structure associated to an arbitrary BSD; the relation between the geometry of the domain and the algebraic structure is explored as well. The last chapter contains a classification of BSDs revealing the connection between the classical and the exceptional domains.

With its unifying approach to mathematics and physics, this work will be useful for researchers and graduate students interested in the many physical applications of bounded symmetric domains. It will also benefit a wider audience of mathematicians, physicists, and graduate students working in relativity, geometry, and Lie theory.


Content:
Front Matter....Pages i-xxiii
Relativity based on symmetry....Pages 1-53
The real spin domain....Pages 55-89
The complex spin factor and applications....Pages 91-151
The classical bounded symmetric domains....Pages 153-193
The algebraic structure of homogeneous balls....Pages 195-236
Classification of JBW *-triple factors....Pages 237-270
Back Matter....Pages 271-279
....
Download the book Physical Applications of Homogeneous Balls for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen