Online Library TheLib.net » Topology II: Homotopy and Homology. Classical Manifolds
cover of the book Topology II: Homotopy and Homology. Classical Manifolds

Ebook: Topology II: Homotopy and Homology. Classical Manifolds

00
27.01.2024
0
0

to Homotopy Theory O. Ya. Viro, D. B. Fuchs Translated from the Russian by C. J. Shaddock Contents Chapter 1. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 § 1. Terminology and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 1. Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3. Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 4. Operations on Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5. Operations on Pointed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 §2. Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 1. Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 2. Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 3. Homotopy as a Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4. Homotopy Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5. Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 6. Deformation Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. 7. Relative Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 8. k-connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 9. Borsuk Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 10. CNRS Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. 11. Homotopy Properties of Topological Constructions . . . . . . . . . . . 15 2. 12. Natural Group Structures on Sets of Homotopy Classes . . . . . . . . 16 §3. Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. 1. Absolute Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 O. Ya. Viro, D. B. Fuchs 3. 2. Digression: Local Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. 3. Local Systems of Homotopy Groups of a Topological Space . . . . 23 3. 4. Relative Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. 5. The Homotopy Sequence of a Pair . . . . . . . . . . . . . . . . . . . . . . . . . 28 3. 6. Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3. 7. The Homotopy Sequence of a Triple . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 2. Bundle Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 §4. Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 1. General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 2. Locally Trivial Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4. 3. Serre Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. 4. Bundles of Spaces of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 §5. Bundles and Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. 1. The Local System of Homotopy Groups of the Fibres of a Serre Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds.
Their book will be used by graduate students and researchers in mathematics and mathematical physics.


Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds.
Their book will be used by graduate students and researchers in mathematics and mathematical physics.
Content:
Front Matter....Pages i-ix
Introduction to Homotopy Theory....Pages 1-93
Homology and Cohomology....Pages 95-196
Classical Manifolds....Pages 197-252
Back Matter....Pages 253-257


Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds.
Their book will be used by graduate students and researchers in mathematics and mathematical physics.
Content:
Front Matter....Pages i-ix
Introduction to Homotopy Theory....Pages 1-93
Homology and Cohomology....Pages 95-196
Classical Manifolds....Pages 197-252
Back Matter....Pages 253-257
....
Download the book Topology II: Homotopy and Homology. Classical Manifolds for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen