Ebook: Geometry of State Spaces of Operator Algebras
- Tags: Operator Theory, Algebra, Applications of Mathematics, Theoretical Mathematical and Computational Physics
- Series: Mathematics: Theory & Applications
- Year: 2003
- Publisher: Birkhäuser Basel
- Edition: 1
- Language: English
- pdf
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics. There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, "State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products" (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work. "Geometry of State Spaces of Operator Algebras" is intended for specialists in operator algebras, as well as graduate students and
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics. There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, "State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products" (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work. "Geometry of State Spaces of Operator Algebras" is intended for specialists in operator algebras, as well as graduate students and
Content:
Front Matter....Pages i-xiii
Front Matter....Pages 1-1
JB-algebras....Pages 3-35
JBW-algebras....Pages 37-77
Structure of JBW-algebras....Pages 79-102
Representations of JB-algebras....Pages 103-138
State Spaces of Jordan Algebras....Pages 139-189
Dynamical Correspondences....Pages 191-207
Front Matter....Pages 209-209
General Compressions....Pages 211-249
Spectral Theory....Pages 251-312
Characterization of Jordan Algebra State Spaces....Pages 315-355
Front Matter....Pages 313-313
Characterization of Normal State Spaces of von Neumann Algebras....Pages 357-373
Characterization of C*-algebra State Spaces....Pages 375-417
Back Matter....Pages 419-467
This monograph presents a complete and self-contained solution to the long-standing problem of giving a geometric description of state spaces of C*-algebras and von Neumann algebras, and of their Jordan algebraic analogs (JB-algebras and JBW-algebras). The material, which previously has appeared only in research papers and required substantial prerequisites for a reader's understanding, is made accessible here to a broad mathematical audience. Key features include: The properties used to describe state spaces are primarily of a geometric nature, but many can also be interpreted in terms of physics. There are numerous remarks discussing these connections * A quick introduction to Jordan algebras is given; no previous knowledge is assumed and all necessary background on the subject is given * A discussion of dynamical correspondences, which tie together Lie and Jordan structures, and relate the observables and the generators of time evolution in physics * The connection with Connes' notions of orientation and homogeneity in cones is explained * Chapters conclude with notes placing the material in historical context * Prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * Excellent bibliography and index In the authors' previous book, "State Spaces of Operator Algebras: Basic Theory, Orientations and C*-products" (ISBN 0-8176-3890-3), the role of orientations was examined and all the prerequisites on C*- algebras and von Neumann algebras, needed for this work, were provided in detail. These requisites, as well as all relevant definitions and results with reference back to State Spaces, are summarized in an appendix, further emphasizing the self-contained nature of this work. "Geometry of State Spaces of Operator Algebras" is intended for specialists in operator algebras, as well as graduate students and
Content:
Front Matter....Pages i-xiii
Front Matter....Pages 1-1
JB-algebras....Pages 3-35
JBW-algebras....Pages 37-77
Structure of JBW-algebras....Pages 79-102
Representations of JB-algebras....Pages 103-138
State Spaces of Jordan Algebras....Pages 139-189
Dynamical Correspondences....Pages 191-207
Front Matter....Pages 209-209
General Compressions....Pages 211-249
Spectral Theory....Pages 251-312
Characterization of Jordan Algebra State Spaces....Pages 315-355
Front Matter....Pages 313-313
Characterization of Normal State Spaces of von Neumann Algebras....Pages 357-373
Characterization of C*-algebra State Spaces....Pages 375-417
Back Matter....Pages 419-467
....