Ebook: Spectral Elements for Transport-Dominated Equations
Author: Daniele Funaro (auth.)
- Tags: Numerical Analysis, Thermodynamics, Complexity
- Series: Lecture Notes in Computational Science and Engineering 1
- Year: 1997
- Publisher: Springer-Verlag Berlin Heidelberg
- Edition: 1
- Language: English
- pdf
In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bub ble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computa tional code based on the spectral collocation method, using algebraic polyno mials. The main topic is the approximation of elliptic type boundary-value par tial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be re duced to a sequence of transport-diffusion equations.
The book deals with the numerical approximation of various PDEs using the spectral element method, with particular emphasis for elliptic equations dominated by first-order terms. It provides a simple introduction to spectral elements with additional new tools (upwind grids and preconditioners). Applications to fluid dynamics and semiconductor devices are considered, as well as in other models were transport-diffusion equations arise. The aim is to provide the reader with both introductive and more advanced material on spectral Legendre collocation methods. The book however does not cover all the aspects of spectral methods. Engineers, physicists and applied mathematicians may study how to implement the collocation method and use the results to improve their computational codes.
The book deals with the numerical approximation of various PDEs using the spectral element method, with particular emphasis for elliptic equations dominated by first-order terms. It provides a simple introduction to spectral elements with additional new tools (upwind grids and preconditioners). Applications to fluid dynamics and semiconductor devices are considered, as well as in other models were transport-diffusion equations arise. The aim is to provide the reader with both introductive and more advanced material on spectral Legendre collocation methods. The book however does not cover all the aspects of spectral methods. Engineers, physicists and applied mathematicians may study how to implement the collocation method and use the results to improve their computational codes.
Content:
Front Matter....Pages N1-x
The Poisson Equation in the Square....Pages 1-29
Steady Transport-Diffusion Equations....Pages 31-54
Other Kinds of Boundary Conditions....Pages 55-74
The Spectral Element Method....Pages 75-125
Time Discretization....Pages 127-162
Extensions....Pages 163-185
Back Matter....Pages 187-215
The book deals with the numerical approximation of various PDEs using the spectral element method, with particular emphasis for elliptic equations dominated by first-order terms. It provides a simple introduction to spectral elements with additional new tools (upwind grids and preconditioners). Applications to fluid dynamics and semiconductor devices are considered, as well as in other models were transport-diffusion equations arise. The aim is to provide the reader with both introductive and more advanced material on spectral Legendre collocation methods. The book however does not cover all the aspects of spectral methods. Engineers, physicists and applied mathematicians may study how to implement the collocation method and use the results to improve their computational codes.
Content:
Front Matter....Pages N1-x
The Poisson Equation in the Square....Pages 1-29
Steady Transport-Diffusion Equations....Pages 31-54
Other Kinds of Boundary Conditions....Pages 55-74
The Spectral Element Method....Pages 75-125
Time Discretization....Pages 127-162
Extensions....Pages 163-185
Back Matter....Pages 187-215
....