Online Library TheLib.net » Dynamics of Charged Particulate Systems: Modeling, Theory and Computation
cover of the book Dynamics of Charged Particulate Systems: Modeling, Theory and Computation

Ebook: Dynamics of Charged Particulate Systems: Modeling, Theory and Computation

00
27.01.2024
0
0

The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality.
This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, which has gained the attention of a number of scientific communities. In summary, the following topics are discussed in detail:

(1) Dynamics of an individual charged particle,

(2) Dynamics of rigid clusters of charged particles,

(3) Dynamics of flowing charged particles,

(4) Dynamics of charged particle impact with electrified surfaces and

(5) An introduction to the mechanistic modeling of swarms.

The text can be viewed as a research monograph suitable for use in an upper division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.




The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality.
This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, which has gained the attention of a number of scientific communities. In summary, the following topics are discussed in detail:

(1) Dynamics of an individual charged particle,

(2) Dynamics of rigid clusters of charged particles,

(3) Dynamics of flowing charged particles,

(4) Dynamics of charged particle impact with electrified surfaces and

(5) An introduction to the mechanistic modeling of swarms.

The text can be viewed as a research monograph suitable for use in an upper division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.




The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality.
This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, which has gained the attention of a number of scientific communities. In summary, the following topics are discussed in detail:

(1) Dynamics of an individual charged particle,

(2) Dynamics of rigid clusters of charged particles,

(3) Dynamics of flowing charged particles,

(4) Dynamics of charged particle impact with electrified surfaces and

(5) An introduction to the mechanistic modeling of swarms.

The text can be viewed as a research monograph suitable for use in an upper division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.


Content:
Front Matter....Pages i-xi
Introduction: Dynamics of an Individual Charged Particle....Pages 1-14
Dynamics of Rigid Clusters of Charged Particles....Pages 15-35
Dynamics of Flowing Charged Particles....Pages 37-78
Charged Particle Impact on Electrified Surfaces....Pages 79-94
An Introduction to Mechanistic Modeling of Swarms....Pages 95-106
Back Matter....Pages 107-115


The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality.
This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, which has gained the attention of a number of scientific communities. In summary, the following topics are discussed in detail:

(1) Dynamics of an individual charged particle,

(2) Dynamics of rigid clusters of charged particles,

(3) Dynamics of flowing charged particles,

(4) Dynamics of charged particle impact with electrified surfaces and

(5) An introduction to the mechanistic modeling of swarms.

The text can be viewed as a research monograph suitable for use in an upper division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.


Content:
Front Matter....Pages i-xi
Introduction: Dynamics of an Individual Charged Particle....Pages 1-14
Dynamics of Rigid Clusters of Charged Particles....Pages 15-35
Dynamics of Flowing Charged Particles....Pages 37-78
Charged Particle Impact on Electrified Surfaces....Pages 79-94
An Introduction to Mechanistic Modeling of Swarms....Pages 95-106
Back Matter....Pages 107-115
....
Download the book Dynamics of Charged Particulate Systems: Modeling, Theory and Computation for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen