Online Library TheLib.net » Structure Discovery in Natural Language
cover of the book Structure Discovery in Natural Language

Ebook: Structure Discovery in Natural Language

00
27.01.2024
0
0

Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet.

This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process?
After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction.

The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.




Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet.

This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process?
After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction.

The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.




Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet.

This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process?
After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction.

The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.


Content:
Front Matter....Pages i-xx
Introduction....Pages 1-17
Graph Models....Pages 19-37
SmallWorlds of Natural Language....Pages 39-71
Graph Clustering....Pages 73-100
Unsupervised Language Separation....Pages 101-111
Unsupervised Part-of-Speech Tagging....Pages 113-144
Word Sense Induction and Disambiguation....Pages 145-155
Conclusion....Pages 157-160
Back Matter....Pages 161-178


Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet.

This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process?
After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction.

The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.


Content:
Front Matter....Pages i-xx
Introduction....Pages 1-17
Graph Models....Pages 19-37
SmallWorlds of Natural Language....Pages 39-71
Graph Clustering....Pages 73-100
Unsupervised Language Separation....Pages 101-111
Unsupervised Part-of-Speech Tagging....Pages 113-144
Word Sense Induction and Disambiguation....Pages 145-155
Conclusion....Pages 157-160
Back Matter....Pages 161-178
....
Download the book Structure Discovery in Natural Language for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen