Ebook: It's a Nonlinear World
Author: Richard H. Enns (auth.)
- Tags: Applications of Mathematics, Simulation and Modeling, Ordinary Differential Equations, Mathematical Methods in Physics
- Series: Springer Undergraduate Texts in Mathematics and Technology
- Year: 2011
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- pdf
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the remainder of Part I covers nonlinear mathematical concepts such as fixed points, limit cycles, fractals, chaos, bifurcations, and solitons, and nonlinear diagnostic tools such as fixed point analysis, bifurcation diagrams, and Lyapunov exponents, to name a few. Part II of the text presents illustrative examples of nonlinear dynamics that are highly relevant to the contemporary world. At the end of each chapter, a wide variety of problems are presented which extend the ideas developed in the chapter as well as allow the reader to explore other aspects of our nonlinear world. The mathematical level of the text assumes good working knowledge of basic calculus and prior exposure to ordinary differential equations and the wave and diffusion equations. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world" or for self-study by practicing scientists and engineers. The more casual reader can simply read the book for intellectual enjoyment.
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the remainder of Part I covers nonlinear mathematical concepts such as fixed points, limit cycles, fractals, chaos, bifurcations, and solitons, and nonlinear diagnostic tools such as fixed point analysis, bifurcation diagrams, and Lyapunov exponents, to name a few. Part II of the text presents illustrative examples of nonlinear dynamics that are highly relevant to the contemporary world. At the end of each chapter, a wide variety of problems are presented which extend the ideas developed in the chapter as well as allow the reader to explore other aspects of our nonlinear world. The mathematical level of the text assumes good working knowledge of basic calculus and prior exposure to ordinary differential equations and the wave and diffusion equations. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world" or for self-study by practicing scientists and engineers. The more casual reader can simply read the book for intellectual enjoyment.
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the remainder of Part I covers nonlinear mathematical concepts such as fixed points, limit cycles, fractals, chaos, bifurcations, and solitons, and nonlinear diagnostic tools such as fixed point analysis, bifurcation diagrams, and Lyapunov exponents, to name a few. Part II of the text presents illustrative examples of nonlinear dynamics that are highly relevant to the contemporary world. At the end of each chapter, a wide variety of problems are presented which extend the ideas developed in the chapter as well as allow the reader to explore other aspects of our nonlinear world. The mathematical level of the text assumes good working knowledge of basic calculus and prior exposure to ordinary differential equations and the wave and diffusion equations. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world" or for self-study by practicing scientists and engineers. The more casual reader can simply read the book for intellectual enjoyment.
Content:
Front Matter....Pages 1-1
Front Matter....Pages 1-1
World of Nonlinear Systems....Pages 3-28
World of Nonlinear ODEs....Pages 29-69
World of Nonlinear Maps....Pages 71-98
World of Solitons....Pages 99-128
Front Matter....Pages 129-129
World of Motion....Pages 131-171
World of Sports....Pages 173-192
World of Electromagnetism....Pages 193-233
World of Weather Prediction....Pages 235-253
World of Chemistry....Pages 255-279
World of Disease....Pages 281-310
World of War....Pages 311-344
Back Matter....Pages 339-339
Drawing examples from mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductory chapter that explores what it means to be nonlinear, the remainder of Part I covers nonlinear mathematical concepts such as fixed points, limit cycles, fractals, chaos, bifurcations, and solitons, and nonlinear diagnostic tools such as fixed point analysis, bifurcation diagrams, and Lyapunov exponents, to name a few. Part II of the text presents illustrative examples of nonlinear dynamics that are highly relevant to the contemporary world. At the end of each chapter, a wide variety of problems are presented which extend the ideas developed in the chapter as well as allow the reader to explore other aspects of our nonlinear world. The mathematical level of the text assumes good working knowledge of basic calculus and prior exposure to ordinary differential equations and the wave and diffusion equations. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world" or for self-study by practicing scientists and engineers. The more casual reader can simply read the book for intellectual enjoyment.
Content:
Front Matter....Pages 1-1
Front Matter....Pages 1-1
World of Nonlinear Systems....Pages 3-28
World of Nonlinear ODEs....Pages 29-69
World of Nonlinear Maps....Pages 71-98
World of Solitons....Pages 99-128
Front Matter....Pages 129-129
World of Motion....Pages 131-171
World of Sports....Pages 173-192
World of Electromagnetism....Pages 193-233
World of Weather Prediction....Pages 235-253
World of Chemistry....Pages 255-279
World of Disease....Pages 281-310
World of War....Pages 311-344
Back Matter....Pages 339-339
....