Online Library TheLib.net » Metalearning: Applications to Data Mining

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.




Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.




Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.


Content:
Front Matter....Pages I-XI
Metalearning: Concepts and Systems....Pages 1-10
Metalearning for Algorithm Recommendation: an Introduction....Pages 11-29
Development of Metalearning Systems for Algorithm Recommendation....Pages 31-59
Extending Metalearning to Data Mining and KDD....Pages 61-72
Extending Metalearning to Data Mining and KDD....Pages 73-90
Bias Management in Time-Changing Data Streams....Pages 91-107
Transfer of Metaknowledge Across Tasks....Pages 109-128
Composition of Complex Systems: Role of Domain-Specific Metaknowledge....Pages 129-152
Back Matter....Pages 153-176


Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.


Content:
Front Matter....Pages I-XI
Metalearning: Concepts and Systems....Pages 1-10
Metalearning for Algorithm Recommendation: an Introduction....Pages 11-29
Development of Metalearning Systems for Algorithm Recommendation....Pages 31-59
Extending Metalearning to Data Mining and KDD....Pages 61-72
Extending Metalearning to Data Mining and KDD....Pages 73-90
Bias Management in Time-Changing Data Streams....Pages 91-107
Transfer of Metaknowledge Across Tasks....Pages 109-128
Composition of Complex Systems: Role of Domain-Specific Metaknowledge....Pages 129-152
Back Matter....Pages 153-176
....
Download the book Metalearning: Applications to Data Mining for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen