Ebook: Metrology and Properties of Engineering Surfaces
Author: E. Mainsah K. J. Stout T. R. Thomas (auth.) E. Mainsah J. A. Greenwood D. G. Chetwynd (eds.)
- Tags: Measurement Science and Instrumentation, Engineering general, Characterization and Evaluation of Materials
- Year: 2001
- Publisher: Springer US
- Edition: 1
- Language: English
- pdf
Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement.
The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a wide range of topics including hardness (measurement and relevance), surface damage and the machining of brittle surfaces, the characterization of automobile cylinder bores using different techniques including artificial neural networks and the design and use of polymer bearings in microelectromechanical devices.
Edited by three practitioners with a wide knowledge of the subject and the community, Metrology and Properties of Engineering Surfaces brings together leading academics and practitioners in a comprehensive and insightful treatment of the subject. The book is an essential reference work both for researchers working and teaching in the technology and for industrial users who need to be aware of current developments of the technology and new areas of application.
Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement.
The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a wide range of topics including hardness (measurement and relevance), surface damage and the machining of brittle surfaces, the characterization of automobile cylinder bores using different techniques including artificial neural networks and the design and use of polymer bearings in microelectromechanical devices.
Edited by three practitioners with a wide knowledge of the subject and the community, Metrology and Properties of Engineering Surfaces brings together leading academics and practitioners in a comprehensive and insightful treatment of the subject. The book is an essential reference work both for researchers working and teaching in the technology and for industrial users who need to be aware of current developments of the technology and new areas of application.
Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement.
The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a wide range of topics including hardness (measurement and relevance), surface damage and the machining of brittle surfaces, the characterization of automobile cylinder bores using different techniques including artificial neural networks and the design and use of polymer bearings in microelectromechanical devices.
Edited by three practitioners with a wide knowledge of the subject and the community, Metrology and Properties of Engineering Surfaces brings together leading academics and practitioners in a comprehensive and insightful treatment of the subject. The book is an essential reference work both for researchers working and teaching in the technology and for industrial users who need to be aware of current developments of the technology and new areas of application.
Content:
Front Matter....Pages i-xxiv
Surface measurement and characterization....Pages 1-42
Fractal geometry in engineering metrology....Pages 43-82
Topography instrumentation....Pages 83-112
Surface Topography Filtering....Pages 113-167
Areal autocorrelation and spectral analysis of surface topography....Pages 169-202
Calibrating scanning probe microscopes....Pages 203-242
Characterization of cylinder bores....Pages 243-281
Surface characterization using neural networks....Pages 283-304
Hardness measurement....Pages 305-322
Surface damage in brittle materials....Pages 323-359
Thin-film conducting polymer bearings....Pages 361-386
Back Matter....Pages 387-449
Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement.
The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a wide range of topics including hardness (measurement and relevance), surface damage and the machining of brittle surfaces, the characterization of automobile cylinder bores using different techniques including artificial neural networks and the design and use of polymer bearings in microelectromechanical devices.
Edited by three practitioners with a wide knowledge of the subject and the community, Metrology and Properties of Engineering Surfaces brings together leading academics and practitioners in a comprehensive and insightful treatment of the subject. The book is an essential reference work both for researchers working and teaching in the technology and for industrial users who need to be aware of current developments of the technology and new areas of application.
Content:
Front Matter....Pages i-xxiv
Surface measurement and characterization....Pages 1-42
Fractal geometry in engineering metrology....Pages 43-82
Topography instrumentation....Pages 83-112
Surface Topography Filtering....Pages 113-167
Areal autocorrelation and spectral analysis of surface topography....Pages 169-202
Calibrating scanning probe microscopes....Pages 203-242
Characterization of cylinder bores....Pages 243-281
Surface characterization using neural networks....Pages 283-304
Hardness measurement....Pages 305-322
Surface damage in brittle materials....Pages 323-359
Thin-film conducting polymer bearings....Pages 361-386
Back Matter....Pages 387-449
....