Online Library TheLib.net » Structure and Synthesis of PID Controllers

In many industrial applications, the existing constraints mandate the use of controllers of low and fixed order while typically, modern methods of optimal control produce high-order controllers. Structure and Synthesis of PID Controllers seeks to start to bridge the resultant gap and presents a novel methodology for the design of low-order controllers such as those of the P, PI and PID types. Written in a self-contained and tutorial fashion, this research monograph first develops a fundamental result, generalizing a classical stability theorem – the Hermite–Biehler Theorem – and then applies it to designing controllers that are widely used in industry. It contains material on:

• current techniques for PID controller design;

• generalization of the Hermite-Biehler theorem;

• stabilization of linear time-invariant plants using PID controllers;

• optimal design with PID controllers;

• robust and non-fragile PID controller design;

• stabilization of first-order systems with time delay;

• constant-gain stabilization with desired damping

• constant-gain stabilization of discrete-time plants.

Practitioners, researchers and graduate students should find this book a valuable source of information on cutting-edge research in the field of control.

Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. This series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




In many industrial applications, the existing constraints mandate the use of controllers of low and fixed order while typically, modern methods of optimal control produce high-order controllers. Structure and Synthesis of PID Controllers seeks to start to bridge the resultant gap and presents a novel methodology for the design of low-order controllers such as those of the P, PI and PID types. Written in a self-contained and tutorial fashion, this research monograph first develops a fundamental result, generalizing a classical stability theorem – the Hermite–Biehler Theorem – and then applies it to designing controllers that are widely used in industry. It contains material on:

• current techniques for PID controller design;

• generalization of the Hermite-Biehler theorem;

• stabilization of linear time-invariant plants using PID controllers;

• optimal design with PID controllers;

• robust and non-fragile PID controller design;

• stabilization of first-order systems with time delay;

• constant-gain stabilization with desired damping

• constant-gain stabilization of discrete-time plants.

Practitioners, researchers and graduate students should find this book a valuable source of information on cutting-edge research in the field of control.

 

Advances in Industrial Control aims to report and  encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. This series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




In many industrial applications, the existing constraints mandate the use of controllers of low and fixed order while typically, modern methods of optimal control produce high-order controllers. Structure and Synthesis of PID Controllers seeks to start to bridge the resultant gap and presents a novel methodology for the design of low-order controllers such as those of the P, PI and PID types. Written in a self-contained and tutorial fashion, this research monograph first develops a fundamental result, generalizing a classical stability theorem – the Hermite–Biehler Theorem – and then applies it to designing controllers that are widely used in industry. It contains material on:

• current techniques for PID controller design;

• generalization of the Hermite-Biehler theorem;

• stabilization of linear time-invariant plants using PID controllers;

• optimal design with PID controllers;

• robust and non-fragile PID controller design;

• stabilization of first-order systems with time delay;

• constant-gain stabilization with desired damping

• constant-gain stabilization of discrete-time plants.

Practitioners, researchers and graduate students should find this book a valuable source of information on cutting-edge research in the field of control.

 

Advances in Industrial Control aims to report and  encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. This series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Content:
Front Matter....Pages I-XVII
Overview of Control Systems....Pages 1-14
Some Current Techniques for PID Controller Design....Pages 15-24
The Hermite-Biehler Theorem and Its Generalization....Pages 25-49
Stabilization of Linear Time-invariant Plants Using PID Controllers....Pages 51-91
Optimal Design Using PID Controllers....Pages 93-124
Robust and Non-fragile PID Controller Design....Pages 125-139
Stabilization of First-order Systems with Time Delay....Pages 141-175
Constant Gain Stabilization with Desired Damping....Pages 177-203
Constant Gain Stabilization of Discrete-time Plants....Pages 205-225
Back Matter....Pages 227-235


In many industrial applications, the existing constraints mandate the use of controllers of low and fixed order while typically, modern methods of optimal control produce high-order controllers. Structure and Synthesis of PID Controllers seeks to start to bridge the resultant gap and presents a novel methodology for the design of low-order controllers such as those of the P, PI and PID types. Written in a self-contained and tutorial fashion, this research monograph first develops a fundamental result, generalizing a classical stability theorem – the Hermite–Biehler Theorem – and then applies it to designing controllers that are widely used in industry. It contains material on:

• current techniques for PID controller design;

• generalization of the Hermite-Biehler theorem;

• stabilization of linear time-invariant plants using PID controllers;

• optimal design with PID controllers;

• robust and non-fragile PID controller design;

• stabilization of first-order systems with time delay;

• constant-gain stabilization with desired damping

• constant-gain stabilization of discrete-time plants.

Practitioners, researchers and graduate students should find this book a valuable source of information on cutting-edge research in the field of control.

 

Advances in Industrial Control aims to report and  encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. This series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Content:
Front Matter....Pages I-XVII
Overview of Control Systems....Pages 1-14
Some Current Techniques for PID Controller Design....Pages 15-24
The Hermite-Biehler Theorem and Its Generalization....Pages 25-49
Stabilization of Linear Time-invariant Plants Using PID Controllers....Pages 51-91
Optimal Design Using PID Controllers....Pages 93-124
Robust and Non-fragile PID Controller Design....Pages 125-139
Stabilization of First-order Systems with Time Delay....Pages 141-175
Constant Gain Stabilization with Desired Damping....Pages 177-203
Constant Gain Stabilization of Discrete-time Plants....Pages 205-225
Back Matter....Pages 227-235
....
Download the book Structure and Synthesis of PID Controllers for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen