Online Library TheLib.net » Lyapunov-Based Control of Mechanical Systems
cover of the book Lyapunov-Based Control of Mechanical Systems

Ebook: Lyapunov-Based Control of Mechanical Systems

00
27.01.2024
0
0

The design of nonlinear controllers for mechanical systems has been an ex­ tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the­ oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con­ trol of mechanical systems. the mechanism for de­ Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de­ sign can most likely be assigned to the fact that Lyapunov function candi­ dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy­ like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the­ ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations.




This is a new text/reference on advanced nonlinear algorithms for mechanical systems that are based on Lypaunov-type design and stability analysis. The presentation illustrates, in a unified framework, how recent Lyapunov-based techniques can be used to solve a variety of nonlinear control problems for mechanical systems.

Starting with part one, the foundations are established in a thorough manner, including necessary math background materials. Part two covers solutions to some tracking problems for rigid mechanical systems, i.e., systems modeled by ordinary differential equations. Part three addresses problems of setpoint/vibration control of flexible mechanical systems, i.e., systems modeled by partial differential equations. By covering theory and applications, the book addresses both ODE-based and PDE-based mechanical systems and presents results for many useful real-time experiments and computer simulations.




This is a new text/reference on advanced nonlinear algorithms for mechanical systems that are based on Lypaunov-type design and stability analysis. The presentation illustrates, in a unified framework, how recent Lyapunov-based techniques can be used to solve a variety of nonlinear control problems for mechanical systems.

Starting with part one, the foundations are established in a thorough manner, including necessary math background materials. Part two covers solutions to some tracking problems for rigid mechanical systems, i.e., systems modeled by ordinary differential equations. Part three addresses problems of setpoint/vibration control of flexible mechanical systems, i.e., systems modeled by partial differential equations. By covering theory and applications, the book addresses both ODE-based and PDE-based mechanical systems and presents results for many useful real-time experiments and computer simulations.


Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-9
Control Techniques for Friction Compensation....Pages 11-51
Full-State Feedback Tracking Controllers....Pages 53-86
Output Feedback Tracking Controllers....Pages 87-127
Strings and Cables....Pages 129-161
Cantilevered Beams....Pages 163-207
Boundary Control Applications....Pages 209-273
Back Matter....Pages 275-316


This is a new text/reference on advanced nonlinear algorithms for mechanical systems that are based on Lypaunov-type design and stability analysis. The presentation illustrates, in a unified framework, how recent Lyapunov-based techniques can be used to solve a variety of nonlinear control problems for mechanical systems.

Starting with part one, the foundations are established in a thorough manner, including necessary math background materials. Part two covers solutions to some tracking problems for rigid mechanical systems, i.e., systems modeled by ordinary differential equations. Part three addresses problems of setpoint/vibration control of flexible mechanical systems, i.e., systems modeled by partial differential equations. By covering theory and applications, the book addresses both ODE-based and PDE-based mechanical systems and presents results for many useful real-time experiments and computer simulations.


Content:
Front Matter....Pages i-xiii
Introduction....Pages 1-9
Control Techniques for Friction Compensation....Pages 11-51
Full-State Feedback Tracking Controllers....Pages 53-86
Output Feedback Tracking Controllers....Pages 87-127
Strings and Cables....Pages 129-161
Cantilevered Beams....Pages 163-207
Boundary Control Applications....Pages 209-273
Back Matter....Pages 275-316
....
Download the book Lyapunov-Based Control of Mechanical Systems for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen