Online Library TheLib.net » Analytical and Computational Methods of Advanced Engineering Mathematics
cover of the book Analytical and Computational Methods of Advanced Engineering Mathematics

Ebook: Analytical and Computational Methods of Advanced Engineering Mathematics

00
27.01.2024
0
0

(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.




(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.


(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.
Content:
Front Matter....Pages i-xxii
Numerical Analysis....Pages 1-75
Ordinary Differential Equations of First Order....Pages 76-137
Ordinary Differential Equations of Higher Order....Pages 138-217
The Laplace Transform....Pages 218-275
Linear Algebra....Pages 276-363
Vector Analysis....Pages 364-439
Partial Differential Equations of Mathematical Physics....Pages 440-471
Fourier Analysis and Sturm-Liouville Theory....Pages 472-555
Boundary Value Problems of Mathematical Physics....Pages 556-661
Back Matter....Pages 662-733


(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.
Content:
Front Matter....Pages i-xxii
Numerical Analysis....Pages 1-75
Ordinary Differential Equations of First Order....Pages 76-137
Ordinary Differential Equations of Higher Order....Pages 138-217
The Laplace Transform....Pages 218-275
Linear Algebra....Pages 276-363
Vector Analysis....Pages 364-439
Partial Differential Equations of Mathematical Physics....Pages 440-471
Fourier Analysis and Sturm-Liouville Theory....Pages 472-555
Boundary Value Problems of Mathematical Physics....Pages 556-661
Back Matter....Pages 662-733
....
Download the book Analytical and Computational Methods of Advanced Engineering Mathematics for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen