Ebook: Mehrdimensionale ENO-Verfahren: Zur Konstruktion nichtoszillatorischer Methoden für hyberbolische Erhaltungsgleichungen
- Tags: Engineering general
- Series: Advances in Numerical Mathematics
- Year: 1997
- Publisher: Vieweg+Teubner Verlag
- Edition: 1
- Language: German
- pdf
In der vorliegenden Arbeit werden mehrdimensionale Rekonstruktionsalgorithmen für ENO-Verfahren erstmals aus Sicht der Theorie der Optimalen Rekonstruktion analysiert. Diese Scihtweise führt von Polynomen weg hin zu mehrdimensionalen Splines, die als radiale Baisisfunktionen auftreten und zu neuen und vielversprechenden Algorithmen führen. Im einzelnen werden die Punkte Finite-Volumen-Verfahren / Klassische Rekonstruktionstechniken / Theorie der Optimalen Rekonstruktion / Theorie der Splines und Radiale Rekonstruktionen behandelt. Alle Algorithmen werden an numerischen Beispielen getestet und verglichen. "Die ENO-Verfahren sind eine neuerdings intensiv untersuchte Klasse von Methoden zur Lösung nichtlinearer hyperbolischer Anfangswertprobleme. Vielfach werden sie auf cartesischen Gittern diskutiert. Bekanntlich sind aber Triangulierungen etc. vor allem aus Gründen der Geometrie vielfach vorzuziehen. Diese Arbeit untersucht nun in der Tat unregelmäßige Gitter und entwickelt hier vor allem eine Originaltheorie optimaler Rekonstruktionen. Dieser bisher auf dem Gebiet nicht eingeschlagene Weg darf zweifellos erhebliches Interesse beanspruchen." H.Muthsam. Monatshefte für Mathematik "... The author has brought together several branches of applied and numerical mathematics and thus has produced new insights and new, improved methods." A.O. Oganesyan. Mathematical Reviews
In der vorliegenden Arbeit werden mehrdimensionale Rekonstruktionsalgorithmen f?r ENO-Verfahren erstmals aus Sicht der Theorie der Optimalen Rekonstruktion analysiert. Diese Scihtweise f?hrt von Polynomen weg hin zu mehrdimensionalen Splines, die als radiale Baisisfunktionen auftreten und zu neuen und vielversprechenden Algorithmen f?hren. Im einzelnen werden die Punkte Finite-Volumen-Verfahren / Klassische Rekonstruktionstechniken / Theorie der Optimalen Rekonstruktion / Theorie der Splines und Radiale Rekonstruktionen behandelt. Alle Algorithmen werden an numerischen Beispielen getestet und verglichen. "Die ENO-Verfahren sind eine neuerdings intensiv untersuchte Klasse von Methoden zur L?sung nichtlinearer hyperbolischer Anfangswertprobleme. Vielfach werden sie auf cartesischen Gittern diskutiert. Bekanntlich sind aber Triangulierungen etc. vor allem aus Gr?nden der Geometrie vielfach vorzuziehen. Diese Arbeit untersucht nun in der Tat unregelm??ige Gitter und entwickelt hier vor allem eine Originaltheorie optimaler Rekonstruktionen. Dieser bisher auf dem Gebiet nicht eingeschlagene Weg darf zweifellos erhebliches Interesse beanspruchen." H.Muthsam. Monatshefte f?r Mathematik "... The author has brought together several branches of applied and numerical mathematics and thus has produced new insights and new, improved methods." A.O. Oganesyan. Mathematical Reviews
In der vorliegenden Arbeit werden mehrdimensionale Rekonstruktionsalgorithmen f?r ENO-Verfahren erstmals aus Sicht der Theorie der Optimalen Rekonstruktion analysiert. Diese Scihtweise f?hrt von Polynomen weg hin zu mehrdimensionalen Splines, die als radiale Baisisfunktionen auftreten und zu neuen und vielversprechenden Algorithmen f?hren. Im einzelnen werden die Punkte Finite-Volumen-Verfahren / Klassische Rekonstruktionstechniken / Theorie der Optimalen Rekonstruktion / Theorie der Splines und Radiale Rekonstruktionen behandelt. Alle Algorithmen werden an numerischen Beispielen getestet und verglichen. "Die ENO-Verfahren sind eine neuerdings intensiv untersuchte Klasse von Methoden zur L?sung nichtlinearer hyperbolischer Anfangswertprobleme. Vielfach werden sie auf cartesischen Gittern diskutiert. Bekanntlich sind aber Triangulierungen etc. vor allem aus Gr?nden der Geometrie vielfach vorzuziehen. Diese Arbeit untersucht nun in der Tat unregelm??ige Gitter und entwickelt hier vor allem eine Originaltheorie optimaler Rekonstruktionen. Dieser bisher auf dem Gebiet nicht eingeschlagene Weg darf zweifellos erhebliches Interesse beanspruchen." H.Muthsam. Monatshefte f?r Mathematik "... The author has brought together several branches of applied and numerical mathematics and thus has produced new insights and new, improved methods." A.O. Oganesyan. Mathematical Reviews
Content:
Front Matter....Pages i-10
Einleitung....Pages 11-17
Hyperbolische Erhaltungsgleichungen....Pages 18-39
Finite-Volumen-Verfahren....Pages 40-72
Polynomiale Rekonstruktionen....Pages 73-145
Optimale Rekonstruktion....Pages 146-179
Globale radiale Funktionen....Pages 180-199
Bedingt positiv A-definite Funktionen....Pages 200-235
Lokale radiale Funktionen....Pages 236-271
Zusammenfassung und Ausblick....Pages 272-273
Back Matter....Pages 274-292
In der vorliegenden Arbeit werden mehrdimensionale Rekonstruktionsalgorithmen f?r ENO-Verfahren erstmals aus Sicht der Theorie der Optimalen Rekonstruktion analysiert. Diese Scihtweise f?hrt von Polynomen weg hin zu mehrdimensionalen Splines, die als radiale Baisisfunktionen auftreten und zu neuen und vielversprechenden Algorithmen f?hren. Im einzelnen werden die Punkte Finite-Volumen-Verfahren / Klassische Rekonstruktionstechniken / Theorie der Optimalen Rekonstruktion / Theorie der Splines und Radiale Rekonstruktionen behandelt. Alle Algorithmen werden an numerischen Beispielen getestet und verglichen. "Die ENO-Verfahren sind eine neuerdings intensiv untersuchte Klasse von Methoden zur L?sung nichtlinearer hyperbolischer Anfangswertprobleme. Vielfach werden sie auf cartesischen Gittern diskutiert. Bekanntlich sind aber Triangulierungen etc. vor allem aus Gr?nden der Geometrie vielfach vorzuziehen. Diese Arbeit untersucht nun in der Tat unregelm??ige Gitter und entwickelt hier vor allem eine Originaltheorie optimaler Rekonstruktionen. Dieser bisher auf dem Gebiet nicht eingeschlagene Weg darf zweifellos erhebliches Interesse beanspruchen." H.Muthsam. Monatshefte f?r Mathematik "... The author has brought together several branches of applied and numerical mathematics and thus has produced new insights and new, improved methods." A.O. Oganesyan. Mathematical Reviews
Content:
Front Matter....Pages i-10
Einleitung....Pages 11-17
Hyperbolische Erhaltungsgleichungen....Pages 18-39
Finite-Volumen-Verfahren....Pages 40-72
Polynomiale Rekonstruktionen....Pages 73-145
Optimale Rekonstruktion....Pages 146-179
Globale radiale Funktionen....Pages 180-199
Bedingt positiv A-definite Funktionen....Pages 200-235
Lokale radiale Funktionen....Pages 236-271
Zusammenfassung und Ausblick....Pages 272-273
Back Matter....Pages 274-292
....