Ebook: Graphical models : foundations of neural computation
- Series: Computational neuroscience.
- Year: 2001
- Publisher: MIT Press
- City: Cambridge, Mass.
- Language: English
- pdf
1 Probabilistic Independence Networks for Hidden Markov Probability Models / Padhraic Smyth, David Heckerman, Michael I. Jordan 1 --
2 Learning and Relearning in Boltzmann Machines / G.E. Hinton, T.J. Sejnowski 45 --
3 Learning in Boltzmann Trees / Lawrence Saul, Michael I. Jordan 77 --
4 Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space / Geoffrey E. Hinton 89 --
5 Attractor Dynamics in Feedforward Neural Networks / Lawrence K. Saul, Michael I. Jordan 97 --
6 Efficient Learning in Boltzmann Machines Using Linear Response Theory / H.J. Kappen, F.B. Rodriguez 121 --
7 Asymmetric Parallel Boltzmann Machines Are Belief Networks / Radford M. Neal 141 --
8 Variational Learning in Nonlinear Gaussian Belief Networks / Brendan J. Frey, Geoffrey E. Hinton 145 --
9 Mixtures of Probabilistic Principal Component Analyzers / Michael E. Tipping, Christopher M. Bishop 167 --
10 Independent Factor Analysis / H. Attias 207 --
11 Hierarchical Mixtures of Experts and the EM Algorithm / Michael I. Jordan, Robert A. Jacobs 257 --
12 Hidden Neural Networks / Anders Krogh, Soren Kamaric Riis 291 --
13 Variational Learning for Switching State-Space Models / Zoubin Ghahramani, Geoffrey E. Hinton 315 --
14 Nonlinear Time-Series Prediction with Missing and Noisy Data / Volker Tresp, Reimar Hofmann 349 --
15 Correctness of Local Probability Propagation in Graphical Models with Loops / Yair Weiss 367.
2 Learning and Relearning in Boltzmann Machines / G.E. Hinton, T.J. Sejnowski 45 --
3 Learning in Boltzmann Trees / Lawrence Saul, Michael I. Jordan 77 --
4 Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space / Geoffrey E. Hinton 89 --
5 Attractor Dynamics in Feedforward Neural Networks / Lawrence K. Saul, Michael I. Jordan 97 --
6 Efficient Learning in Boltzmann Machines Using Linear Response Theory / H.J. Kappen, F.B. Rodriguez 121 --
7 Asymmetric Parallel Boltzmann Machines Are Belief Networks / Radford M. Neal 141 --
8 Variational Learning in Nonlinear Gaussian Belief Networks / Brendan J. Frey, Geoffrey E. Hinton 145 --
9 Mixtures of Probabilistic Principal Component Analyzers / Michael E. Tipping, Christopher M. Bishop 167 --
10 Independent Factor Analysis / H. Attias 207 --
11 Hierarchical Mixtures of Experts and the EM Algorithm / Michael I. Jordan, Robert A. Jacobs 257 --
12 Hidden Neural Networks / Anders Krogh, Soren Kamaric Riis 291 --
13 Variational Learning for Switching State-Space Models / Zoubin Ghahramani, Geoffrey E. Hinton 315 --
14 Nonlinear Time-Series Prediction with Missing and Noisy Data / Volker Tresp, Reimar Hofmann 349 --
15 Correctness of Local Probability Propagation in Graphical Models with Loops / Yair Weiss 367.
Download the book Graphical models : foundations of neural computation for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)