Ebook: Identification of continuous systems
- Genre: Technique // Automation
- Series: North-Holland systems and control series
- Year: 1987
- Publisher: Elsevier Science
- City: Amsterdam; New York
- Language: English
- pdf
Bringing together important advances in the field of continuous system identification, this book deals with both parametric and nonparametric methods. It pays special attention to the problem of retaining continuous model parameters in the estimation equations, to which all the existing techniques used in estimating discrete models may be applied. It is aimed at both the academic researcher and the control engineer in industry. The techniques covered range from certain simple numerical or graphical methods applicable to some of the frequently encountered model forms, to attractive recursive algorithms for continuous model identification suitable for real time implementation. These include the recent methods based on orthogonal functions such as those of Walsh and Poisson moment functionals. Some techniques based on stable model adaptation principles are also presented and illustrated.
Contents:
Introduction. Continuous-Time Models of Dynamical Systems. Nonparametric Models. Parametric Models. Stochastic Models of Linear Time-Invariant Systems. Models of Distributed Parameter Systems (DPS). Signals and their Representations. Functions in the Ordinary Sense. Distribution or Generalized Functions. Identification of Linear Time-Invariant (LTIV) Systems via Nonparametric Models. The Role of Nonparametric Models in Continuous System Identification. Test Signals for System Identification. Identification of Linear Time-Invariant Systems - Time-Domain Approach. Frequency-Domain Approach. Methods for Obtaining Transfer Functions from Nonparametric Models. Numerical Transformations between Time- and Frequency-Domains. Parameter Estimation for Continuous-Time Models. The Primary Stage. The Secondary Stage: Parameter Estimation. Identification of Linear Systems Using Adaptive Models. Gradient Methods. Frequency-Domain. Stability Theory. Linear Filters. Identification of Multi-Input Multi-Output (MIMO) Systems, Distributed Parameter Systems (DPS) and Systems with Unknown Delays and Nonlinear Elements. MIMO Systems. Time-Varying Parameter Systems (TVPS). Lumped Systems with Unknown Time-Delays. Identification of Systems with Unknown Nonlinear Elements. Identification of Distributed Parameter Systems. Determination of System Structure. Index
Contents:
Introduction. Continuous-Time Models of Dynamical Systems. Nonparametric Models. Parametric Models. Stochastic Models of Linear Time-Invariant Systems. Models of Distributed Parameter Systems (DPS). Signals and their Representations. Functions in the Ordinary Sense. Distribution or Generalized Functions. Identification of Linear Time-Invariant (LTIV) Systems via Nonparametric Models. The Role of Nonparametric Models in Continuous System Identification. Test Signals for System Identification. Identification of Linear Time-Invariant Systems - Time-Domain Approach. Frequency-Domain Approach. Methods for Obtaining Transfer Functions from Nonparametric Models. Numerical Transformations between Time- and Frequency-Domains. Parameter Estimation for Continuous-Time Models. The Primary Stage. The Secondary Stage: Parameter Estimation. Identification of Linear Systems Using Adaptive Models. Gradient Methods. Frequency-Domain. Stability Theory. Linear Filters. Identification of Multi-Input Multi-Output (MIMO) Systems, Distributed Parameter Systems (DPS) and Systems with Unknown Delays and Nonlinear Elements. MIMO Systems. Time-Varying Parameter Systems (TVPS). Lumped Systems with Unknown Time-Delays. Identification of Systems with Unknown Nonlinear Elements. Identification of Distributed Parameter Systems. Determination of System Structure. Index
Download the book Identification of continuous systems for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)