Ebook: Introduction to Topological Manifolds
Author: John M. Lee (auth.)
- Genre: Mathematics // Geometry and Topology
- Tags: Manifolds and Cell Complexes (incl. Diff.Topology), Algebraic Topology
- Series: Graduate Texts in Mathematics 202
- Year: 2011
- Publisher: Springer-Verlag New York
- City: New York
- Edition: 2
- Language: English
- djvu
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition.
Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.
This text is designed to be used for an introductory graduate course on the geometry and topology of manifolds. It should be accessible to any student who has completed a solid undergraduate degree in mathematics. The author’s book Introduction to Smooth Manifolds is meant to act as a sequel to this book.
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. A course on manifolds differs from most other introductory mathematics graduate courses in that the subject matter is often completely unfamiliar. Unlike algebra and analysis, which all math majors see as undergraduates, manifolds enter the curriculum much later. It is even possible to get through an entire undergraduate mathematics education without ever hearing the word "manifold." Yet manifolds are part of the basic vocabulary of modern mathematics, and students need to know them as intimately as they know the integers, the real numbers, Euclidean spaces, groups, rings, and fields. In his beautifully conceived introduction, the author motivates the technical developments to follow by explaining some of the roles manifolds play in diverse branches of mathematics and physics. Then he goes on to introduce the basics of general topology and continues with the fundamental group, covering spaces, and elementary homology theory. Manifolds are introduced early and used as the main examples throughout. John M. Lee is currently Professor of Mathematics at the University of Washington.