Online Library TheLib.net » Curves and surfaces

The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.




Geometric flows are non-linear parabolic differential equations which describe the evolution of geometric structures. Inspired by Hamilton's Ricci flow, the field of geometric flows has seen tremendous progress in the past 25 years and yields important applications to geometry, topology, physics, nonlinear analysis, and so on. Of course, the most spectacular development is Hamilton's theory of Ricci flow and its application to three-manifold topology, including the Hamilton-Perelman proof of the Poincaré conjecture. This twelfth volume of the annual Surveys in Differential Geometry examines recent developments on a number of geometric flows and related subjects, such as Hamilton's Ricci flow, formation of singularities in the mean curvature flow, the Kähler-Ricci flow, and Yau's uniformization conjecture. Contents On the conformal scalar curvature equation and related problems A survey of the Kähler-Ricci Flow and Yau's Uniformization Conjecture Recent developments on the Hamilton's Ricci Flow Curvature flows in semi-Riemannian manifolds Global regularity and singularity development for wave maps Relativistic Teichmüller theory: a Hamilton-Jacobi approach to 2+1 dimensional Einstein gravity Monotonicity and Li-Yau-Hamilton inequalities Singularities of mean curvature flow and flow with surgeries Some recent developments in Lagrangian mean curvature flows Local theory of curves -- Global theory of plane curves -- Local theory of surfaces -- Curvatures -- Geodesics -- The Gauss-Bonnet theorem -- Global theory of surfaces
Download the book Curves and surfaces for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen