Ebook: Topology and Combinatorics of 3-Manifolds
Author: Klaus Johannson (auth.)
- Genre: Mathematics
- Tags: Algebraic Topology, Manifolds and Cell Complexes (incl. Diff.Topology), Group Theory and Generalizations
- Series: Lecture Notes in Mathematics 1599
- Year: 1995
- Publisher: Springer-Verlag Berlin Heidelberg
- City: Berlin; New York
- Edition: 1
- Language: English
- djvu
This book is a study of combinatorial structures of 3-mani- folds, especially Haken 3-manifolds. Specifically, it is concerned with Heegard graphs in Haken 3-manifolds, i.e., with graphs whose complements have a free fundamental group. These graphs always exist. They fix not only a combinatorial stucture but also a presentation for the fundamental group of the underlying 3-manifold. The starting point of the book is the result that the intersection of Heegard graphs with incompressible surfaces, or hierarchies of such surfaces, is very rigid. A number of finiteness results lead up to a ri- gidity theorem for Heegard graphs. The book is intended for graduate students and researchers in low-dimensional topolo- gy as well as combinatorial theory. It is self-contained and requires only a basic knowledge of the theory of 3-manifolds
This book is a study of combinatorial structures of 3-mani- folds, especially Haken 3-manifolds. Specifically, it is concerned with Heegard graphs in Haken 3-manifolds, i.e., with graphs whose complements have a free fundamental group. These graphs always exist. They fix not only a combinatorial stucture but also a presentation for the fundamental group of the underlying 3-manifold. The starting point of the book is the result that the intersection of Heegard graphs with incompressible surfaces, or hierarchies of such surfaces, is very rigid. A number of finiteness results lead up to a ri- gidity theorem for Heegard graphs. The book is intended for graduate students and researchers in low-dimensional topolo- gy as well as combinatorial theory. It is self-contained and requires only a basic knowledge of the theory of 3-manifolds