Ebook: Biomechanics of the Brain
- Genre: Biology
- Tags: Biophysics and Biological Physics, Biomedical Engineering, Neurosurgery
- Series: Biological and Medical Physics Biomedical Engineering
- Year: 2011
- Publisher: Springer-Verlag New York
- Edition: 1
- Language: English
- pdf
The mechanical properties of living tissues continue to be the major topic of biomechanical investigations. Most researchers have investigated load-bearing tissues, such as bones, ligaments, muscles and other components of the musculoskeletal system, blood vessels (and blood), lungs, skin and hair. Until recently, very soft tissues of organs whose role has little or nothing to do with transmitting mechanical loads have been outside the scope of the mainstream biomechanical research. These “neglected” organs include the liver, kidneys, prostate and other abdominal organs, and especially the brain. Increased interest in the biomechanics of soft tissues, particularly the brain, as evidenced by the increased number of publications in this area, has motivated this effort to summarize recent developments. Biomechanics of the Brain will take the reader to the forefront of current research.
Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery, to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the first comprehensive reference in the field of biomechanics of the brain. Experienced biomechanics researchers as well as those new to the field will find parts of this book useful.
Biomechanics of the Brain will present an introduction to brain anatomy for engineers and scientists. Experimental techniques such as brain imaging and brain tissue mechanical property measurement will be discussed, as well as computational methods for neuroimage analysis and modeling of brain deformations due to impacts and neurosurgical interventions. Brain trauma between the different sexes will be analyzed. Applications will include prevention and diagnosis of traumatic injuries, such as shaken baby syndrome, neurosurgical simulation and neurosurgical guidance, as well as brain structural disease modeling for diagnosis and prognosis. This book will be the first book on brain biomechanics. It will provide a comprehensive source of information on this important field for students, researchers, and medical professionals in the fields of computer-aided neurosurgery, head injury, and basic biomechanics.