Online Library TheLib.net » Modern Differential Geometry in Gauge Theories: Yang¿Mills Fields, Volume II
cover of the book Modern Differential Geometry in Gauge Theories: Yang¿Mills Fields, Volume II

Ebook: Modern Differential Geometry in Gauge Theories: Yang¿Mills Fields, Volume II

00
27.01.2024
0
0

Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications.

Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang–Mills fields in general.

The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.




Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications. Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Volume 1 focused on Maxwell fields. Continuing in Volume II, the author extends the application of his sheaf-theoretic approach to Yang–Mills fields in general. The important topics include: cohomological classification of Yang–Mills fields, the geometry of Yang–Mills A-connections and moduli space of a vector sheaf, as well as Einstein's equation in vacuum. The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.
Download the book Modern Differential Geometry in Gauge Theories: Yang¿Mills Fields, Volume II for free or read online
Read Download
Continue reading on any device:
QR code
Last viewed books
Related books
Comments (0)
reload, if the code cannot be seen