Ebook: Sobolev Gradients and Differential Equations
Author: John William Neuberger (auth.)
- Genre: Mathematics
- Tags: Partial Differential Equations, Numerical Analysis
- Series: Lecture Notes in Mathematics 1670
- Year: 1997
- Publisher: Springer Berlin Heidelberg
- City: Berlin; New York
- Edition: 1
- Language: English
- djvu
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Download the book Sobolev Gradients and Differential Equations for free or read online
Continue reading on any device:
Last viewed books
Related books
{related-news}
Comments (0)