Ebook: From Geometry to Quantum Mechanics: In Honor of Hideki Omori
- Tags: Differential Geometry, Topological Groups Lie Groups, Mathematical Methods in Physics, Quantum Physics, Global Analysis and Analysis on Manifolds, Geometry
- Series: Progress in Mathematics 252
- Year: 2007
- Publisher: Birkhäuser Basel
- Edition: 1
- Language: English
- pdf
This volume is composed of invited expository articles by well-known mathematicians in differential geometry and mathematical physics that have been arranged in celebration of Hideki Omori's recent retirement from Tokyo University of Science and in honor of his fundamental contributions to these areas.
The papers focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, infinite-dimensional Lie group theory, quantizations and noncommutative geometry, as well as applications of partial differential equations and variational methods to geometry. These articles will appeal to graduate students in mathematics and quantum mechanics, as well as researchers, differential geometers, and mathematical physicists.
Contributors include: M. Cahen, D. Elworthy, A. Fujioka, M. Goto, J. Grabowski, S. Gutt, J. Inoguchi, M. Karasev, O. Kobayashi, Y. Maeda, K. Mikami, N. Miyazaki, T. Mizutani, H. Moriyoshi, H. Omori, T. Sasai, D. Sternheimer, A. Weinstein, K. Yamaguchi, T. Yatsui, and A. Yoshioka.
* Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference